1. 다음 중 옳지 <u>않은</u> 것은?

- ① 평균과 중앙값은 다를 수도 있다. ② 중앙값은 반드시 한 개만 존재한다.
- ③ 최빈값은 반드시 한 개만 존재한다.
- ④ 자료의 개수가 홀수이면 $\frac{n+1}{2}$ 째 번 자료값이 중앙값이 된다. ⑤ 자료의 개수가 짝수이면 $\frac{n}{2}$ 번째와 $\frac{n+1}{2}$ 번째 자료값의 평균이 중앙값이 된다.

③ 최빈값은 반드시 한 개만 존재한다. → 최빈값은 여러 개 존재

할 수 있다.

 2.
 다음 표는 동건이의 일주일동안 수학공부 시간을 조사하여 나타낸 것이다. 수학공부 시간의 평균은?

 요일
 일
 월
 화
 수
 목
 금
 토

시간	2	1	0	3	2	1	5

① 1시간 ② 2시간 ③ 3시간 ④ 4시간 ⑤ 5시간

⊕ 4-1E ⊕ 0-1E

(평균)= $\frac{\{(변량)의총합\}}{\{(변량)의갯수\}}$ 이므로 $\frac{2+1+0+3+2+1+5}{7} = \frac{14}{7} = 2(시간) 이다.$

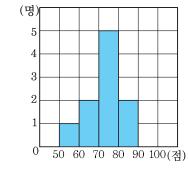
- **3.** 다음의 표준편차를 순서대로 x, y, z 라고 할 때, x, y, z의 대소 관계를 바르게 나타낸 것은?
 - X : 1 부터 200 까지의 짝수 Y: 1 부터 200 까지의 홀수 Z: 1 부터 400 까지의 4 의 배수

① x = y = z ② x < y = z ③ x = y < z ④ x = y > z

X, Y, Z 모두 변량의 개수는 100 개이다.

해설

이때, X, Y는 모두 2 만큼의 간격을 두고 떨어져 있으므로 X, Y의 표준편차는 같다.

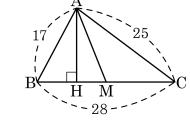

한편, $Z \leftarrow 4$ 만큼의 간격을 두고 떨어져 있으므로 X, Y 보다 표준편차가 크다.

4. 네 개의 변량 4, 6, a, b 의 평균이 5 이고, 분산이 3 일 때, $a^2 + b^2$ 의 값은?

① 20 ② 40 ③ 60 ④ 80 ⑤ 100

변량 4, 6, a, b의 평균이 5이므로 $\frac{4+6+a+b}{4} = 5, a+b+10 = 20$ $\therefore a+b=10\cdots \bigcirc$ 또, 분산이 3 이므로 $\frac{(4-5)^2+(6-5)^2+(a-5)^2+(b-5)^2}{4} = 3$ $\frac{1+1+a^2-10a+25+b^2-10b+25}{4} = 3$ $\frac{a^2+b^2-10(a+b)+52}{4} = 3$ $a^2+b^2-10(a+b)+52=12$ $\therefore a^2+b^2-10(a+b)=-40\cdots \bigcirc$ 으의 식에 ①을 대입하면 $\therefore a^2+b^2=10(a+b)-40=10\times 10-40=60$

다음 히스토그램은 학생 10명의 영어 성적을 나타낸 것이다. 이 자료 **5.** 의 분산은?


- ① 72 ② 74 ③ 76 ④ 78 ⑤ 80

(평균)= $\frac{55 \times 1 + 65 \times 2 + 75 \times 5 + 85 \times 2}{10} = \frac{730}{10} = 73$ (점) (분산)= $\frac{1}{10} \left\{ (55 - 73)^2 \times 1 + (65 - 73)^2 \times 2 \right\}$

$$+\frac{1}{10}\left\{ (75-73)^2 \times 5 + (85-73)^2 \times 2 \right\}$$

$$= \frac{760}{10} = 76$$

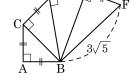
다음 그림에서 $\overline{AH}\bot\overline{BC},\ \overline{BM}=\overline{MC}$ 이고 $\overline{AB}=17$, $\overline{BC}=28$, **6.** $\overline{\mathrm{CA}} = 25$ 일 때, $\overline{\mathrm{AM}}$ 의 길이를 구하여라.

ightharpoonup 정답: $3\sqrt{29}$

답:

$$\overline{BH} = x$$
 이면 $\overline{HC} = 28 - x$
 $\overline{AH}^2 = 17^2 - x^2 = 25^2 - (28 - x)^2$
 $56x = 448, x = 8$
 $\overline{AH} = \sqrt{17^2 - 8^2} = 15$

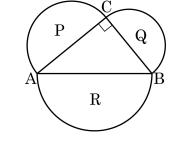
$$\overline{AH} = \sqrt{17^2 - 8^2} = 15$$


$$\overline{\text{HM}} = \left(\frac{1}{2} \times 28\right) - 8 = 6$$

$$\therefore \overline{AM} = \sqrt{\overline{AH}^2 + \overline{HM}^2} = \sqrt{261} = 3\sqrt{29}$$

다음 그림에서 $\overline{\mathrm{BF}}=3\sqrt{5}$ 일 때, $\overline{\mathrm{AC}}$ 의 길 7. 이는?

 \bigcirc $\sqrt{3}$ ① 1 $\sqrt{5}$ 4

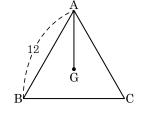


 $\overline{\mathrm{AC}} = a$ 라고 두면

 $\overline{\mathrm{BF}} = \sqrt{a^2 + a^2 + a^2 + a^2 + a^2} = a\sqrt{5} = 3\sqrt{5}, a = 3$ 이다.

8. 다음 그림과 같이 직각삼각형 ABC 의 각 변을 지름으로 하는 반원의 넓이를 각각 P , Q , R 라고 할 때, $Q=12\pi cm^2$, $R=30\pi cm^2$ 일 때, \overline{AC} 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$


▷ 정답: 12 <u>cm</u>

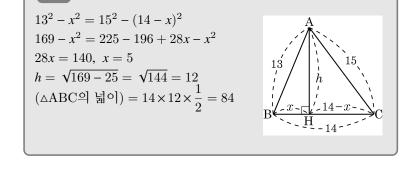
▶ 답:

$$\begin{split} P+Q&=R~^{\text{ol}} \ P+12\pi=30\pi\\ \therefore P&=18\pi\,\mathrm{cm}^2 \end{split}$$

반원의 넓이가 $18\pi\,\mathrm{cm}^2$ 이므로 원의 넓이는 $36\pi\,\mathrm{cm}^2$ 따라서 원의 반지름은 $6\,\mathrm{cm}$ 이고 지름은 $12\,\mathrm{cm}$ 이다. \therefore $\overline{\mathrm{AC}}=12\,\mathrm{cm}$

다음 그림과 같이 한 변의 길이가 12인 정삼 9. 각형 ABC의 무게중심을 G라 할 때, \overline{AG} 의 길이는?

- ① $\sqrt{3}$ ② $2\sqrt{3}$ ③ $4\sqrt{3}$ ④ $6\sqrt{3}$
- ⑤ $8\sqrt{3}$


△ABC가 정삼각형이므로

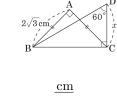
 \overline{AG} 의 길이는 정삼각형 높이의 $\frac{2}{3}$ 가 된다. $\overline{AG} = \frac{\sqrt{3}}{2} \times 12 \times \frac{2}{3} = \frac{12\sqrt{3}}{3} = 4\sqrt{3}$

10. 세변의 길이가 각각 13, 14, 15인 삼각형 ABC의 넓이를 구하여라.

답:

▷ 정답: 84

11. 다음 그림의 직각삼각형 ABC 에서 $\overline{\mathrm{BD}}=8$ 일 때, $\overline{\mathrm{AC}}$ 의 길이는?


- ① $2\sqrt{3}$ 3 4
- ② $4(\sqrt{3}-1)$ $4\sqrt{3}$

- (5)4 $(\sqrt{3}+1)$

 $\angle CAD = 45$ ° 이므로 $\overline{CD} = x$

 $1: \sqrt{3} = x: (x+8)$ $(\sqrt{3}-1)x = 8$ $\therefore x = \frac{8}{\sqrt{3}-1} = 4(\sqrt{3}+1)$

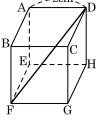
12. 다음 그림에서 $\overline{AB} = 2\sqrt{3} \text{ cm}$ 일 때, x 의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $2\sqrt{2}$ $\underline{\mathrm{cm}}$

 \overline{AB} : $\overline{BC} = 1$: $\sqrt{2}$

 $\begin{array}{c}
2\sqrt{3} : \overline{BC} = 1 : \sqrt{2} \\
\overline{BC} = 2\sqrt{6} \text{ (cm)} \\
\overline{BC} : \overline{CD} = \sqrt{3} : 1
\end{array}$

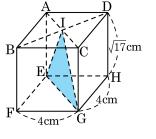

 $\overline{BC} : \overline{CD} = \sqrt{3} : 1$ $2\sqrt{6} : x = \sqrt{3} : 1$ $\therefore x = 2\sqrt{2}(\text{cm})$

 $\therefore x = 2 \sqrt{2} \text{ cm})$

13. 다음 그림과 같이 한 모서리의 길이가 $2 \, \mathrm{cm}$ 인 정육면체의 대각선 \overline{FD} 의 길이는?

B E

 $\underline{\mathrm{cm}}$


ightharpoonup 정답: $2\sqrt{3}$ cm

 $\overline{\mathrm{FD}} = \sqrt{2^2 + 2^2 + 2^2} = 2\sqrt{3} (\,\mathrm{cm})$ 이다.

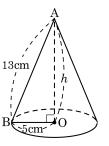
-n 11

▶ 답:

14. 다음 그림과 같은 직육면체에서 \overline{AC} 와 \overline{BD} 의 교점을 I 라 할 때, ΔIEG 의 넓이 를 구하여라.

ightharpoonup 정답: $2\sqrt{34}$ $m cm^2$

 $\overline{\mathrm{EG}} = 4\sqrt{2}\,\mathrm{cm}$


▶ 답:

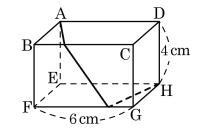
 $\Delta {
m IEG}$ 는 밑변이 $4\sqrt{2}\,{
m cm}$, 높이가 $\sqrt{17}\,{
m cm}$ 인 삼각형이므로

넓이는 $\frac{1}{2} \times 4\sqrt{2} \times \sqrt{17} = 2\sqrt{34} (\text{cm}^2)$ 이다.

 $\underline{\mathrm{cm}^2}$

15. 다음 그림과 같이 밑면의 반지름의 길이가 $5\,\mathrm{cm}$, 모선의 길이가 13 cm 인 원뿔이 있다. 원뿔의 높이 h 와 부피 V 모두 바르게 구한 것은?

① $10\,\mathrm{cm}$, $100\pi\,\mathrm{cm}^3$

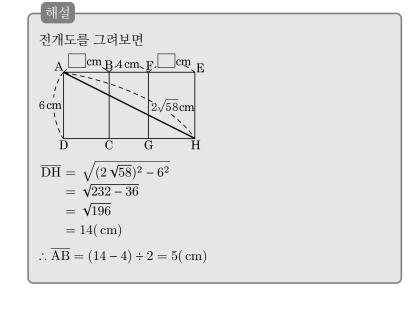

- $\ensuremath{\mathfrak{3}}\xspace$ $11\,\ensuremath{\mathrm{cm}}\xspace$, $120\pi\,\ensuremath{\mathrm{cm}}^3$
- $\textcircled{4}12\,\mathrm{cm}\ ,\,100\,\mathrm{cm}^3$

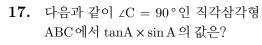
 $\ensuremath{\bigcirc}\xspace 11\,\mathrm{cm}$, $100\pi\,\mathrm{cm}^3$

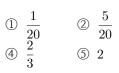
원뿔의 높이는 $\sqrt{13^2 - 5^2} = \sqrt{144} = 12$ (cm) 이다.

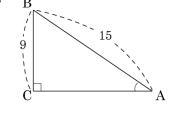
원뿔의 부피는 $\frac{1}{3} \times \pi \times 5^2 \times 12 = 100\pi (\,\mathrm{cm}^3)$ 이다.

16. 다음 그림과 같이 직육면체의 점 A 에서 모서리 BC, FG 를 지나 점 $\rm H$ 에 이르는 최단거리가 $2\sqrt{58} \rm cm$ 라 할 때, $\overline{\rm AB}$ 의 길이를 구하여라.

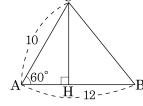

 $35 \, \mathrm{cm}$


4 6 cm


 \Im 7 cm

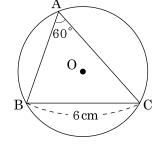

2 4 cm

 $\bigcirc 3 \, \mathrm{cm}$

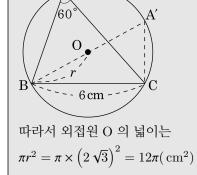


$$\overline{AC} = \sqrt{15^2 - 9^2} = \sqrt{144} = 12$$

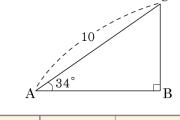
 $\tan A \times \sin A = \frac{9}{12} \times \frac{9}{15} = \frac{9}{20}$


- 18. 다음 그림에서 $\overline{AC}=10$, $\overline{AB}=12$, $\angle A=60$ °일 때, \overline{BC} 의 길이를 구하여라.
 - 10

① $2\sqrt{11}$ ② $2\sqrt{17}$ ③ $2\sqrt{21}$ ④ $2\sqrt{29}$ ⑤ $2\sqrt{31}$


 $\sin 60^{\circ} = \frac{\overline{CH}}{10} = \frac{\sqrt{3}}{2}, \ \overline{CH} = 5\sqrt{3}$ $\cos 60^{\circ} = \frac{\overline{AH}}{10} = \frac{1}{2}, \ \overline{AH} = 5$ $\overline{BC} = \sqrt{\overline{CH}^2 + \overline{BH}^2}$ $= \sqrt{(5\sqrt{3})^2 + 7^2} = \sqrt{75 + 49}$ $= \sqrt{124} = 2\sqrt{31}$

- 19. 다음 그림에서 $\angle A = 60^{\circ}$, $\overline{BC} = 6 \, \mathrm{cm}$ 일 때, 외접원 O 의 넓이는?
 - ① $6\pi \,\mathrm{cm}^2$
 - $2 8\pi \,\mathrm{cm}^2$
 - $412\pi\,\mathrm{cm}^2$ $3 10\pi\,\mathrm{cm}^2$
 - \bigcirc $24\pi\,\mathrm{cm}^2$



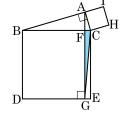
그림과 같이 $\overline{A'B}$ 가 지름이 되도록 원주 위에 점 A' 을 잡고 반지름을 r 이라 하면 $\angle A = \angle A' = 60^\circ(\because$ 원주각) $\sin \mathbf{A}' = \frac{6}{2r} = \frac{3}{r}$

$$\therefore r = \frac{3}{\sin 60^{\circ}} = 2\sqrt{3}$$

 ${f 20}$. 다음 그림의 ΔABC 에서 삼각비의 표를 보고, ΔABC 의 둘레의 길이를 구하면?

각도	sin	cos	tan
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

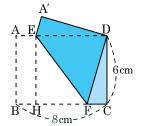
4 23.882


⑤ 29.107

① 5.592 ② 8.29 ③ 13.882

 $\overline{AB} = 10 \times \sin 56^{\circ} = 10 \times 0.829 = 8.29$ $\overline{BC} = 10 \times \cos 56^{\circ} = 10 \times 0.5592 = 5.592$

따라서 $\triangle ABC$ 의 둘레의 길이는 10 + 8.29 + 5.592 = 23.882이다.


- **21.** 다음 그림에서 $\triangle ABC$ 는 $\angle A = 90$ ° 인 직각삼 각형이고 □BDEC 는 정사각형이다. $\overline{\mathrm{AG}}$ $\bot\overline{\mathrm{DE}}$ 이고, $\overline{AB}=24$, $\overline{BC}=25$ 일 때, $\triangle FGC$ 의 넓이는 얼마인가?
 - $\bigcirc \frac{49}{2}$ 3 50 ① 48 $4) \frac{51}{2}$ ⑤ 52

 $\overline{AC} = \sqrt{25^2 - 24^2} = 7$ 이므로 $\square ACHI = 49$

 $\triangle FGC = \triangle ECF = \triangle ACH = \frac{1}{2} \square ACHI$ 이므로 $\triangle FGC = \frac{1}{2} \times 49 = \frac{49}{2}$ 이다.

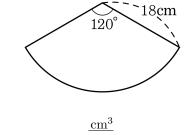
- 22. 다음 그림은 직사각형 ABCD 를 점 B 가 점 D 에 오도록 접었다. $\overline{\mathrm{CD}} = 6\,\mathrm{cm},\ \overline{\mathrm{BC}} =$ 발일 때, 다음 중 옳지 <u>않은</u> 것은?
 - $8\,\mathrm{cm}$, 점 H 는 점 E 에서 $\overline{\mathrm{BC}}$ 에 내린 수선의

- ① $\overline{A}\overline{E} = \frac{7}{4} \text{ cm}$ ③ $\overline{EF} = \frac{17}{2} \text{ cm}$ ⑤ $\overline{HF} = \frac{9}{2} \text{ cm}$
- ② ∠DEF = ∠EFH $\textcircled{4} \ \overline{BF} = \overline{DE}$

$\Delta A \prime \mathrm{ED}$ 에서 $\overline{A'\mathrm{E}}$ 를 x 로 잡으면 피타고라스 정리에 따라

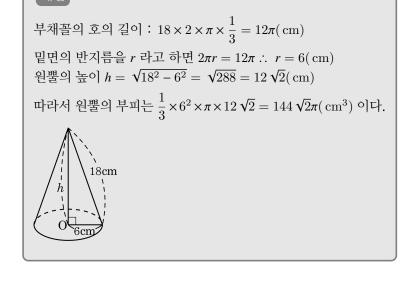
 $x^{2} + 6^{2} = (8 - x)^{2}$, $x = \frac{7}{4} = \overline{A'E} = \overline{FC}$

$$\therefore \overline{ED} = 8 - \frac{7}{4} = \frac{25}{4} (\text{cm}) \ \bigcirc \overline{\square}, \ \overline{HF} =$$

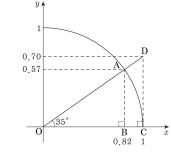

$$\therefore \overline{ED} = 8 - \frac{7}{4} = \frac{25}{4} \text{ (cm) 이코, } \overline{HF} = \overline{CH} - \overline{CF} = \frac{25}{4} - \frac{7}{4} = \frac{18}{4} = \frac{9}{2} \text{ (cm)}$$

$$\Delta \text{EHF}$$
 에서 피타고라스 정리에 따라 $\overline{\text{EF}}^2=6^2+\left(\frac{9}{2}\right)^2=\frac{225}{4}$

 $\overline{\mathrm{EF}}$ 는 변이므로 양수이다. 따라서 $\overline{\mathrm{EF}} = \frac{15}{2} (\,\mathrm{cm})$ 이다.


$$\Im \overline{EF} \neq \frac{17}{2} \text{ cm}$$

23. 다음 그림은 어떤 원뿔의 옆면의 전개도이다. 이 전개도로 만들어지는 원뿔의 부피를 구하여라.



ightharpoonup 정답: $144\sqrt{2}\pi \underline{\mathrm{cm}^3}$

▶ 답:

 ${f 24.}$ 다음 그림과 같이 반지름의 길이가 ${f 1}$ 인 사분원에서 옳지 ${f \underline{ce}}$ 것을 모두 고르면?(정답 2개)

 $3 \sin 55^{\circ} = 0.82$

- $2 \tan 35^{\circ} = \tan 55^{\circ}$

② $\tan 35^{\circ} = \frac{\overline{CD}}{\overline{OC}} = 0.70, \tan 55^{\circ} = \frac{\overline{OC}}{\overline{CD}} = \frac{1}{0.70}$ 이므로 $\tan 35^{\circ} \neq \tan 55^{\circ}$ $4 \sin 35^{\circ} = \frac{\overline{AB}}{\overline{OA}} = \frac{\overline{AB}}{1} = 0.57$

- **25.** $\tan(A 15^{\circ}) = 1$ 이코, $x^2 2x \tan A 3(\tan A)^2 = 0$ 의 두 근을 구하면? (단, 0° < A < 90°)
 - ① $3\sqrt{3}$, $2\sqrt{3}$

해설

- ② $-\sqrt{3}$, $3\sqrt{3}$ ③ $2\sqrt{3}$
- $4 \ 2\sqrt{3}, \ \sqrt{3}$ $5 \ -\sqrt{3}, \ -3\sqrt{3}$

 $an 45^\circ = 1$ 이므로 A - $15^\circ = 45^\circ$, A = 60° 이다. 따라서 $x^2 - 2\tan 60^\circ x - 3(\tan 60^\circ)^2 = x^2 - 2\sqrt{3}x - 9 = 0$ 이다. 그슬 구하면 $(x-3\sqrt{3})(x+\sqrt{3})=0$, $x=3\sqrt{3}$, $-\sqrt{3}$ 이다.