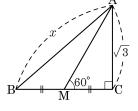
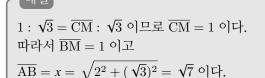

1. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{\rm DE}^2+\overline{\rm AC}^2=3\sqrt{3}$ 일 때, $\overline{\rm AE}^2+\overline{\rm DC}^2$ 의 값은?

①
$$\sqrt{21}$$
 ② $\sqrt{23}$ ③ 5 ④ $3\sqrt{3}$ ⑤ $\sqrt{29}$

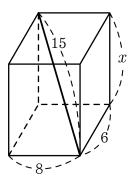
$$\overline{AE}^2 + \overline{DC}^2 = \overline{DE}^2 + \overline{AC}^2$$
 이므로 $\overline{DE}^2 + \overline{AC}^2 = 3\sqrt{3}$

2. 다음 그림과 같은 직사각형 ABCD 의 내부에 한 점 P 가 있다. $\overline{PB} = 5 \text{cm}$, $\overline{PD} = 3\sqrt{3} \text{ cm}$ 일 때, $\overline{PA}^2 + \overline{PC}^2$ 의 값은?


3 49

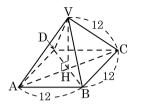


$$\overline{PA}^2 + \overline{PC}^2 = (3\sqrt{3})^2 + 5^2 = 52$$
 이다.


. 다음 그림의 $\triangle ABC$ 는 직각삼각형이다. 이 때, x 는?

①
$$\sqrt{3}$$
 ② $\sqrt{5}$ ③ $\sqrt{7}$ ④ $\sqrt{11}$ ⑤ $\sqrt{13}$

4. 다음 직육면체에서 x 의 값을 구하여라.



①
$$\sqrt{5}$$
 ② $2\sqrt{5}$ ③ $3\sqrt{5}$ ④ $4\sqrt{5}$ ⑤ $5\sqrt{5}$

$$15 = \sqrt{6^2 + 8^2 + x^2}$$

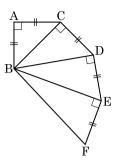
 $225 = 36 + 64 + x^2$, $x^2 = 125$
 $x > 0$ 이므로 $x = 5\sqrt{5}$

다음 그림과 같이 정사각뿔의 꼭짓점 V에서 밑면에 내린 수선의 발을 H라고 할 때. \overline{VH} 의 길이는?

5.

⑤ $3\sqrt{2}$

 $4 6 \sqrt{2}$


① $12\sqrt{6}$ ② $3\sqrt{6}$ ③ $36\sqrt{2}$

 $\overline{\text{CH}} = \overline{\text{AC}} \times \frac{1}{2} = 12\sqrt{2} \times \frac{1}{2} = 6\sqrt{2}$ $\triangle VHC$ 에서 $\overline{VH} = \sqrt{12^2 - (6\sqrt{2})^2} = \sqrt{72} = 6\sqrt{2}$ 6. 다음 그림에서 $\overline{\mathrm{BF}}=5$ 일 때, $\Delta\mathrm{BDE}$ 의 둘레의 길이를 구하면?

③
$$5\sqrt{3} + \sqrt{15}$$
 ④ $5\sqrt{5} + \sqrt{15}$

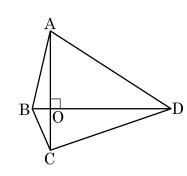
⑤
$$5\sqrt{5} + 2\sqrt{3}$$

$$\overline{AB} = a$$
라 두면

해설

$$\overline{BF} = \sqrt{a^2 + a^2 + a^2 + a^2 + a^2 + a^2} = a\sqrt{5} = 5, a = \sqrt{5}$$
이다.

ΔBDE의 둘레의 길이를 구하기 위해서 \overline{BD}

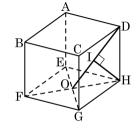

$$\sqrt{(\sqrt{5})^2 + (\sqrt{5})^2 + (\sqrt{5})^2} = \sqrt{15}$$
 이 고, BE
$$\sqrt{(\sqrt{5})^2 + (\sqrt{5})^2 + (\sqrt{5})^2 + (\sqrt{5})^2} = 2\sqrt{5}$$
이다.

따라서 둘레는 $\sqrt{5} + 2\sqrt{5} + \sqrt{15} = 3\sqrt{5} + \sqrt{15}$ 이다.

7. 세 변을 각각 x + 3, x + 5, x + 7 이 피타고라스의 수가 되도록 하는 x 의 값은?

8. 다음과 같이 ĀC⊥BD 를 만족하는 사각형 ABCD 는 이 성립한다.

안에 들어갈 식으로 가장 적절한 것을 고르면?



①
$$\overline{AB}^2 + \overline{BC}^2 = \overline{CD}^2 + \overline{AD}^2$$

② $\overline{AB}^2 + \overline{AD}^2 = \overline{BC}^2 + \overline{CD}^2$

$$\overline{\text{(3)}}\overline{\text{AB}}^2 + \overline{\text{CD}}^2 = \overline{\text{BC}}^2 + \overline{\text{AD}}^2$$

해설

 $\triangle ABO$ 에서 $\overline{AB}^2 = \overline{AO}^2 + \overline{BO}^2$ $\triangle CDO$ 에서 $\overline{CD}^2 = \overline{CO}^2 + \overline{DO}^2$ $\triangle BCO$ 에서 $\overline{BC}^2 = \overline{BO}^2 + \overline{CO}^2$ $\triangle ADO$ 에서 $\overline{AD}^2 = \overline{AO}^2 + \overline{DO}^2$ 9. 다음 그림과 같이 한 변의 길이가 $\sqrt{2}a$ 인 정육면체에서 밑면의 두 대각선의 교점이 O이고, 정육면체의 꼭짓점 H에서 \overline{DO} 위로 수선을 내렸을 때, $\overline{\Pi}$ 의 길이가 $\sqrt{3}$ 이었다. 이 정육면체의 한 변의 길이는?

(5) 11

한 변의 길이를
$$\sqrt{2}a$$
 라고 하면 $\overline{\text{FH}}=2a$

② 5

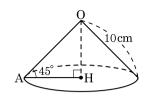
$$\overline{OH} = a$$

$$\overline{\mathrm{DO}} = \sqrt{a^2 + (\sqrt{2}a)^2} = \sqrt{3}a$$

삼각형 DOH 의 넓이에서
 $\sqrt{3}a \times \sqrt{3} = \mathrm{a} \times \sqrt{2}\mathrm{a}$
 $a = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$

$$\sqrt{2} \times \frac{3\sqrt{2}}{2} = 3$$
이다.

③ 7


(4) 9

10. 다음 그림의 원뿔에서 부피를 구하면?

①
$$\frac{160\sqrt{3}}{3}\pi \text{ cm}^3$$
 ② $70\sqrt{2}\pi \text{ cm}^3$

①
$$\frac{160\sqrt{3}}{3}\pi \text{ cm}^3$$
 ② $70\sqrt{2}\pi \text{ cm}^3$
③ $\frac{250\sqrt{2}}{3}\pi \text{ cm}^3$ ④ $\frac{280\sqrt{2}}{3}\pi \text{ cm}^3$

(5) $100 \sqrt{3}\pi \,\mathrm{cm}^3$

$$\triangle OAH$$
 에서 $\overline{AH}: \overline{OH}: \overline{OA} = 1:1:\sqrt{2}$
 $\overline{AH}: \overline{AO} = 1:\sqrt{2}$ 에서 $\overline{AH}:10=1:\sqrt{2}$

$$\therefore \overline{AH} = 5\sqrt{2} \text{ (cm)}$$

$$\overline{AH} : \overline{OH} = 1 : 1$$
 에서 $5\sqrt{2} : \overline{OH} = 1 : 1$
 $\overline{OH} = 5\sqrt{2}$ (cm)

$$\frac{1}{3} \times \pi \times (5\sqrt{2})^2 \times 5\sqrt{2} = \frac{250\sqrt{2}}{3}\pi \text{ (cm}^3)$$
이다.

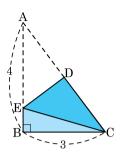
①
$$\sqrt{2}$$
 ② $2\sqrt{2}$ ③ $3\sqrt{2}$ ④ $4\sqrt{2}$ ⑤ $5\sqrt{2}$

$$G = \left(0, \frac{1}{3}a\right)$$
 이를 피타고라스 정리에 대입하면
$$\left(\frac{2\sqrt{5}}{3}\right)^2 = a^2 + \frac{a^2}{9} = \frac{10a^2}{9} \text{ 이 되어 } a = \sqrt{2}\text{가 성립한다.}$$

$$D(\sqrt{2}, 0), F\left(\frac{\sqrt{2}}{3}, \frac{4\sqrt{2}}{3}\right) \stackrel{\text{d}}{=} \text{지나는 함수의 식을 구하면 } f(x) = \frac{10a^2}{9}$$

 $\overline{\mathrm{OD}} = 3\overline{\mathrm{AD}}$ 이므로 $\mathrm{D} = (a,0)$ 이라고 하면

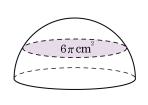
그러므로 함수 f 의 v 절편은 $2\sqrt{2}$ 이다.


 $-2x + 2\sqrt{2}$ 이다.

12. 다음 그림과 같이 ∠B = 90° 인 직각삼각형 ABC 의 빗변 AC 를 두 점 A 와 C 가 겹쳐지 도록 접었을 때. △CDE 의 둘레의 길이는?

 $3\frac{17}{2}$

$$\triangle ABC$$
 가 직각삼각형이므로 $\overline{AC}^2 = 4^2 + 3^2$, $\overline{AC} = 5$ 이다.


$$\overline{\text{EB}} = x$$
 라 두면 $\overline{\text{AE}} = \overline{\text{EC}} = 4 - x$ 이고

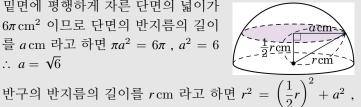
$$(4-x)^2 = x^2 + 3^2, x = \frac{7}{8}$$
 이다.

$$\overline{\mathrm{DE}}^2 = \left(\frac{25}{8}\right)^2 - \left(\frac{5}{2}\right)^2, \ \overline{\mathrm{DE}} = \frac{15}{8} \ \mathrm{이다}.$$

따라서
$$\triangle CDE$$
 의 둘레는 $\frac{15}{8} + \frac{25}{8} + \frac{5}{2} = \frac{15}{2}$ 이다.

13. 다음 반구에서 반지름의 $\frac{1}{2}$ 지점을 지나고 밑면에 평행하게 자른 단면의 넓이가 $6\pi cm^2$ 일 때, 반구의 겉넓이를 구하면?

(1) $6\pi \, \text{cm}^2$


(2) $12\pi \, \text{cm}^2$

(3) $18\pi \, \text{cm}^2$

 $24\pi\,\mathrm{cm}^2$

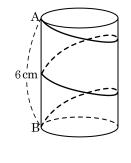
(5) $30\pi \, \text{cm}^2$

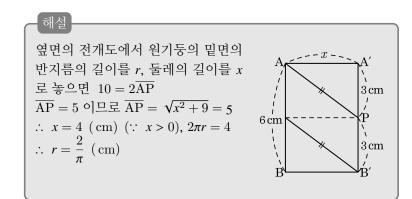
밑면에 평행하게 자른 단면의 넓이가 6π cm² 이므로 단면의 반지름의 길이 를 a cm 라고 하면 $\pi a^2 = 6\pi$, $a^2 = 6$ $\therefore a = \sqrt{6}$

 $\frac{3}{4}r^2 = 6$, $r^2 = 8$

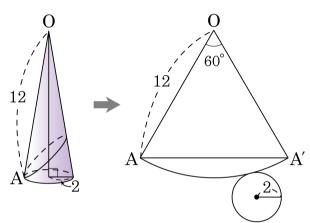
반구의 겉넓이 = 구의 겉넓이 $\times \frac{1}{2}$ + 밑면의 넓이

구의 겉넓이 $\times \frac{1}{2} = 4\pi r^2 \times \frac{1}{2} = 4\pi \times 8 \times \frac{1}{2} = 16\pi (\text{cm}^2)$


밑면의 넓이 = $\pi r^2 = \pi \times 8 = 8\pi (\text{cm}^2)$


따라서 반구의 겉넓이는 $16\pi + 8\pi = 24\pi (\text{ cm}^2)$ 이다.

14. 다음 그림과 같이 높이가 6 cm 인 원기둥의 점 A에서 B까지의 최단거리로 실을 두 번 감았더니실의 길이가 10 cm 이었다. 다음 중 원기둥의밑면의 반지름의 길이는?


①
$$\frac{1}{\pi}$$
 cm ② π cm
④ $\frac{\pi}{2}$ cm ③ $\frac{4}{\pi}$ cm

15. 다음 그림은 모선의 길이가 12 이고 밑면의 반지름의 길이가 2 인원뿔과 원뿔의 전개도이다. 이 원뿔의 밑면에서 한 점 A 에서 옆면을 지나 다시 점 A 에 이르는 최단 거리를 구하려고 한다. 다음에 주어진 정삼각형의 성질을 이용하여 $\overline{AA'}$ 의 길이를 구하면?

정삼각형 ABC에서 세 변 a, b, c 의 길이는 같다.

① 2

② 10

0

3

4 14

⑤ 60

해설

애/글

 $\overline{AO} = \overline{OA'} = 12$ 인 이등변삼각형이고 $\angle AOA'$ 가 60° 이므로 삼각형 OAA' 은 정삼각형이다.

따라서 $\overline{AO} = \overline{OA'} = \overline{AA'}$ 이므로 $\overline{AA'}$ 의 길이는 12 이다.