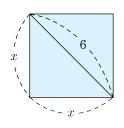
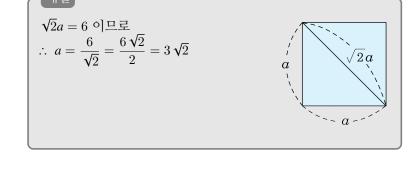
1. 다음 그림과 같이 한 변의 길이가 11cm 인 A 정사각형의 대각선의 길이를 구하여라.

D 11cm B^{l}

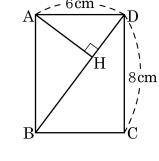
> 정답: 11√2 cm


▶ 답:

 $\sqrt{2}a$ 이므로 한 변의 길이가 $11(\mathrm{cm})$ 인 정사각형의 길이는 $11\sqrt{2}$ (cm) 이다.

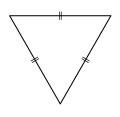

한 변의 길이가 a 인 정사각형의 대각선의 길이는

 $\underline{\mathrm{cm}}$


. 다음 정사각형의 대각선의 길이는 6 이다. 이 정사각형의 한 변의 길이는?

 $\sqrt{2}$ ② $2\sqrt{2}$ ③ $3\sqrt{2}$ ④ $4\sqrt{2}$ ⑤ $5\sqrt{2}$

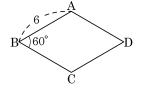
다음 그림과 같이 가로, 세로의 길이가 각각 6cm , 8cm 인 직사각형이 **3.** 있다. $\overline{AH} \perp \overline{BD}$ 라고 할 때, $\overline{AH} + \overline{BD}$ 의 값을 구하여라.


▶ 답:

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $rac{74}{5}$ $m \underline{cm}$

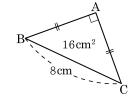
 $\triangle ABD$ 에 의해서 $\overline{BD} = \sqrt{6^2 + 8^2} = \sqrt{100} = 10 \text{(cm)}$ $\triangle ABD$ 의 넓이는 $\frac{1}{2} \times 6 \times 8 = \frac{1}{2} \times \overline{AH} \times 10 , \overline{AH} = \frac{24}{5} (cm)$ $\overline{AH} + \overline{BD} = 10 + \frac{24}{5} = \frac{74}{5} (cm)$


4. 다음은 넓이가 $4\sqrt{3}$ 인 정삼각형이다. 높이는?

① $\sqrt{3}$ ② $2\sqrt{3}$ ③ $3\sqrt{3}$ ④ $4\sqrt{3}$ ⑤ $5\sqrt{3}$

정삼각형의 넓이 : $\frac{\sqrt{3}}{4}a^2=4\sqrt{3}$, $a^2=16$, a=4 한 변의 길이가 4 인 정삼각형의 높이 : $\frac{\sqrt{3}}{2} \times 4 = 2\sqrt{3}$

5. 다음 그림과 같이 한 변의 길이가 6cm 인 마름모의 넓이를 구하여라.



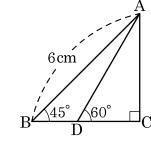
말: <u>cm²</u>
 ▷ 정답: 18√3 <u>cm²</u>

 ΔABC 는 한 변의 길이가 $6 {
m cm}$ 인 정삼각형이므로 넓이는 $\frac{\sqrt{3}}{4} imes 6^2 = 9\,\sqrt{3} ({
m cm}^2)$ 이다.

따라서, 마름모의 넓이는 $2 \times 9\sqrt{3} = 18\sqrt{3} (\text{cm}^2)$ 이다.

다음은 이등변삼각형이다. 밑변의 길이가 6. $8\,\mathrm{cm}$ 이고 넓이가 $16\,\mathrm{cm}^2$ 라고 할 때, $\overline{\mathrm{AC}}$ 의 길이는 몇 cm 인가?

- ① $\sqrt{2}$ cm
- $2\sqrt{2}$ cm $4\sqrt{2}$ cm $5\sqrt{2}$ cm
- $3\sqrt{2}$ cm



 $\triangle ABC$ 에서 $8 \times (높이) \times \frac{1}{2} = 16$

(높이) = 4(cm) △ABC는 직각이등변삼각형이다.

 $\therefore \overline{AC} = \sqrt{16 + 16} = 4\sqrt{2} (cm)$

다음 그림에서 $\angle ABC=45\,^\circ$, $\angle ADC=60\,^\circ$ 이고, $\overline{AB}=6\,\mathrm{cm}\,$ 일 때, \overline{AD} 의 길이를 구하여라. 7.

▶ 답: $\underline{\mathrm{cm}}$ ightharpoonup 정답: $2\sqrt{6}$ $\underline{\mathrm{cm}}$

해설

삼각형 ABC에서 $\overline{\rm AB}$: $\overline{\rm AC}$ = $\sqrt{2}$: 1이므로 $\overline{\rm AC}$ = $\frac{6}{\sqrt{2}}$ = $3\sqrt{2}(\,\mathrm{cm})$ 삼각형 ACD에서 $\overline{\mathrm{AD}}:\overline{\mathrm{AC}}=2:\sqrt{3}$ 이므로 $\overline{\mathrm{AD}}=2\sqrt{6}(\,\mathrm{cm})$

- **8.** 좌표평면 위의 두 점 A(-3, 6), B(5, -2) 사이의 거리를 구하여라.
 - ① $2\sqrt{2}$ ② $4\sqrt{2}$ ③ $6\sqrt{2}$ ④ $8\sqrt{2}$ ⑤ $10\sqrt{2}$

 $\overline{AB} = \sqrt{\{5 - (-3)\}^2 + (-2 - 6)^2}$ $= \sqrt{64 + 64}$ $= 8\sqrt{2}$

9. 좌표평면 위의 세 점이 다음과 같을 때, 이 세 점을 연결한 삼각형은 어떤 삼각형인지 말하여라.

보기 A(0, 5), B(4, 2), C(6, 3)

답:

해설

➢ 정답 : 문각삼각형

 $\begin{aligned} & \underline{A(0, 5), B(4, 2), C(6, 3)} \\ & \underline{AB} = \sqrt{(0-4)^2 + (5-2)^2} = \sqrt{16+9} = 5 \\ & \underline{BC} = \sqrt{(4-6)^2 + (2-3)^2} = \sqrt{5} \end{aligned}$

BC = $\sqrt{(4-6)^2 + (2-3)^2} = \sqrt{5}$ $\overline{CA} = \sqrt{(0-6)^2 + (5-3)^2}$ = $\sqrt{36+4} = \sqrt{40}$

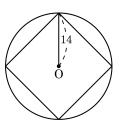
 $(\sqrt{40})^2 > 5^2 + (\sqrt{5})^2$ 이므로 둔각삼각형이다.

10. 다음 그림과 같은 직사각형에서 $\overline{AB}=2$, $\overline{AC}=4\sqrt{2}$ 일 때, \overline{BC} 의 길이는?

① $\sqrt{7}$ ② $\sqrt{14}$ ③ $\sqrt{21}$ ④ $2\sqrt{7}$ ⑤ $\sqrt{35}$

피타고라스 정리에 따라서 $(4\sqrt{2})^2 = 2^2 + x^2$ $x^2 = 32 - 4 = 28$ x는 변의 길이이므로 x > 0

 $\therefore x = \sqrt{28} = 2\sqrt{7}$

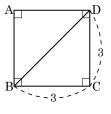

11. 대각선의 길이가 8인 정사각형의 한 변의 길이를 구하여라.

① $\frac{8\sqrt{2}}{3}$ ② 4 ③ $2\sqrt{4}$ ④ $8\sqrt{2}$ ⑤ $4\sqrt{2}$

정사각형의 한 변을 x라고 하면

 $x^{2} + x^{2} = 8^{2}$ $2x^{2} = 64$ $x^{2} = 32$ $\therefore x = \sqrt{32} = 4\sqrt{2}$

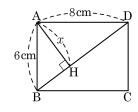
12. 반지름의 길이가 14 인 원 안에 정사각형이 내접해 있다. 정사각형의 한 변의 길이는 ?


① $10\sqrt{2}$ ② $12\sqrt{3}$ ③ $12\sqrt{2}$ ④ $14\sqrt{3}$ ⑤ $14\sqrt{2}$

해설

한 변의 길이를 a 라고 하면 $\sqrt{2}a=28$ 이므로 $a = \frac{28}{\sqrt{2}} = \frac{28\sqrt{2}}{2} = 14\sqrt{2}$

$$\sqrt{2}$$
 2


13. 다음 정사각형의 대각선의 길이를 구하여라.

□ 답: **□** 정답: 3√2

피타고라스 정리를 적용하여

 $x^2 = 3^2 + 3^2$ x > 0 이므로 $x = 3\sqrt{2}$ 이다. 14. 다음 그림과 같이 가로, 세로의 길이가 각각 8cm, 6cm 인 직사각형 ABCD 가 있다. 점 A 에서 대각선 BD 에 내린 수선의 길이는?

① 4 cm ④ 5 cm ② 4.8 cm ⑤ 5.2 cm $3 2\sqrt{6} \text{ cm}$

 $\overline{BD} = \sqrt{6^2 + 8^2} = \sqrt{100} = 10 \text{ (cm)}$

해설

△ABD 에서 10 × x = 6 × 8 ∴ x = 4.8(cm)

정삼각형의 한 변의 길이를 *a* 라고 하면

(넓이) = $\frac{\sqrt{3}}{4}a^2 = 9\sqrt{3}$ 이므로 $a^2 = 36$ $\therefore a = 6$ (높이) = $\frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3}$

$$4 \frac{3\sqrt{3}}{2}$$

①
$$\frac{\sqrt{3}}{3}$$
 ② $6\sqrt{3}$ ③ $\frac{4\sqrt{2}}{3}$ ④ $\frac{3\sqrt{3}}{2}$ ⑤ $3\sqrt{3}$

16. 넓이가 $48\sqrt{3}$ cm² 인 정삼각형이 높이를 구하여라.

▶ 답: $\underline{\mathrm{cm}}$

▷ 정답: 12 cm

정삼각형의 넓이 = $\frac{\sqrt{3}}{4}a^2 = 48\sqrt{3}$ $a^2 = 192$ $a = 8\sqrt{3}$ 이므로 정삼각형의 높이는 $\frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times 8\sqrt{3} = 12$ (cm) 이다.

17. 지름이 10인 원 안에, 다음과 같이 정육각형이 내접해 있다. 이때, 정육각형의 넓이는?

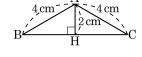

- ① $\frac{71\sqrt{3}}{2}$ ② $\frac{73\sqrt{3}}{2}$ ② $\frac{79\sqrt{3}}{2}$ ③ $\frac{79\sqrt{3}}{2}$

(정육각형의 넓이) = (정삼각형의 넓이) × 6 이므로

 $\frac{\sqrt{3}}{4} \times 25 \times 6 = \frac{75\sqrt{3}}{2}$

18. 다음 그림과 같이 넓이가 $60 \, \mathrm{cm}^2$ 인 이등변삼각 형 ABC 에서 $\overline{\mathrm{BC}} = 10 \, \mathrm{cm}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

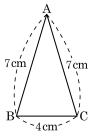

정답: 13 cm

▶ 답:

높이 = h 라 하면, $\frac{1}{2} \times h \times 10 = 60$

h = 12 cm, $(\overline{AB})^2 = 5^2 + 12^2, \overline{AB} = 13 \text{ cm}$

 19. 다음 그림의 AB=AC = 4 cm 인 이등변삼 각형 ABC 에서 AH⊥BC , AH = 2 cm 일 때, BC의 길이를 구하면?

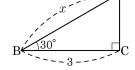

① $5\sqrt{3}$ cm ④ $2\sqrt{3}$ cm $3\sqrt{3}$ cm

해설

⊕ **V**3CIII

 $\overline{\mathrm{BH}} = \sqrt{4^2 - 2^2} = 2\sqrt{3} (\mathrm{\,cm}) : \overline{\mathrm{BC}} = 4\sqrt{3} (\mathrm{\,cm})$

 ${f 20}$. 다음 그림과 같이 $\overline{
m AB}=\overline{
m AC}=7\,{
m cm},\;\overline{
m BC}=4\,{
m cm}$ 인 이등변삼각형 ABC 의 넓이를 구하여라.


▶ 답: ightharpoonup 정답: $6\sqrt{5}$ $\underline{
m cm}^2$ $\underline{\mathrm{cm}^2}$

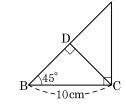
이등변삼각형의 높이는 $\sqrt{7^2-2^2}=\sqrt{49-4}=\sqrt{45}=3\sqrt{5}~(\,\mathrm{cm})$ (넓이) = $4 \times 3\sqrt{5} \times \frac{1}{2} = 6\sqrt{5} \text{ (cm}^2)$

21. 다음 그림과 같은 직각삼각형에서 x 의 값을 구하면?

① 5 ② $2\sqrt{2}$ ④ $3\sqrt{3}$ ③ 9

해설

 $x: 3 = 2: \sqrt{3}$ $x = 2\sqrt{3}$


- 22. 다음 그림의 $\overline{AB} = 4$, $\angle B = 45$ °, $\angle C =$ $30\,^{\circ}$ 인 ΔABC 에서 꼭짓점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라고 할 때, $\overline{\mathrm{BC}}$ 의 길이는?

 - ① $4\sqrt{2}$
- ② $4\sqrt{6}$ ⑤ $8\sqrt{2}$
- $3 2\sqrt{2} + \frac{2\sqrt{6}}{3}$
- 4 $2\sqrt{2} + 2\sqrt{6}$

해설

 $\begin{aligned} 1: \ \sqrt{2} &= \overline{BH}: 4, \ \overline{BH} = 2 \sqrt{2} = \overline{AH} \\ 1: \ \sqrt{3} &= 2 \sqrt{2}: \overline{CH}, \ \overline{CH} = 2 \sqrt{6} \end{aligned}$ $\therefore \overline{BC} = \overline{BH} + \overline{CH} = 2\sqrt{2} + 2\sqrt{6}$

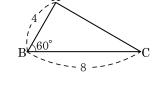
23. 다음 그림의 $\triangle ABC$ 에서 $\angle C=90$ ° 이고 $\overline{CD}\bot\overline{AB}$ 이다. \overline{CD} 의 길이를 구하여라.

<mark>▷ 정답:</mark> 5√2 <u>cm</u>

 $\underline{\mathrm{cm}}$

 $\overline{AC} = 10 \, \text{cm}$ $\overline{AB} = 10 \, \sqrt{2}$

▶ 답:


 $AB = 10 \sqrt{2}$ $\triangle ABC = 10 \times 10 \times \frac{1}{2} = 10 \sqrt{2} \times \overline{CD} \times \frac{1}{2}$

 $\therefore \overline{\mathrm{CD}} = 5\sqrt{2}(\mathrm{\,cm})$

24. 다음 그림에서 $\triangle ABC$ 의 넓이는?

① $4\sqrt{3}$ ② 8 $\bigcirc 8\sqrt{3}$ $4 7\sqrt{3}$

 $36\sqrt{3}$

해설

점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라 하면 $\triangle ABH$ 에서 $\overline{AH}:\overline{AB}=\overline{AH}:4=\sqrt{3}:2$ $\therefore \overline{AH}=2\sqrt{3}$

 $\therefore \triangle ABC = \frac{1}{2} \times 8 \times 2\sqrt{3} = 8\sqrt{3}$

- **25.** 두 점 P(2, 2), Q(a, -1) 사이의 거리가 $3\sqrt{5}$ 일 때, a 의 값은? (단, 점 Q 는 제3 사분면의 점이다.)
 - ① -8 ② -6 ③ -4 ④ 4 ⑤ 8

 $\sqrt{(2-a)^2+3^2}=3\sqrt{5}$ 에서 a=-4, 8 이다. 점 Q 는 제3 사분면 위에 있으므로 $a<0,\ a=-4$ 이다.

해설

26. 좌표평면 위의 두 점 A(-3, 2), B(6, 4) 사이의 거리를 구하여라.

답:

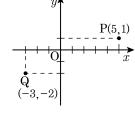
▷ 정답: √85

제설 $\overline{AB} = \sqrt{(-3-6)^2 + (2-4)^2}$ $= \sqrt{81+4} = \sqrt{85}$

27. 다음 중 원점 O(0,0) 와의 거리가 가장 먼 점은?

- \bigcirc C(2, 3) ① A(-1, -2) ② B(1, -1)
- ④ $D(\sqrt{2}, 1)$ ⑤ E(-2, -1)

해설

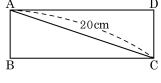

① $\sqrt{5}$

 $2\sqrt{2}$

 $\sqrt{3}$ $\sqrt{13}$ $4\sqrt{3}$

 \bigcirc $\sqrt{5}$

28. 다음 그림에서 두 점 P(5, 1), Q(-3, -2)사이의 거리는?


① $\sqrt{5}$ ② 5 ③ $\sqrt{73}$

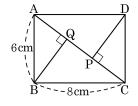
④ $\sqrt{65}$

⑤ 11

 $\overline{PQ} = \sqrt{\{5 - (-3)\}^2 + \{1 - (-2)\}^2}$ $= \sqrt{8^2 + 3^2} = \sqrt{73}$

29. 다음 그림의 직사각형 ABCD 에서 가 로의 길이가 세로의 길이의 3 배이고 대각선의 길이가 $20\,\mathrm{cm}$ 일 때, 이 직사 각형의 세로의 길이를 구하여라.

① $\sqrt{10} \,\mathrm{cm}$ $4\sqrt{10}\,\mathrm{cm}$ $2\sqrt{10}\,\mathrm{cm}$ $5\sqrt{10}\,\mathrm{cm}$


 $3\sqrt{10}\,\mathrm{cm}$

해설

가로 3x cm , 세로 x cm 라고 하면 $(3x)^2 + x^2 = 20^2$ $10x^2 = 400$ $x^2 = 40$

x > 0 이므로 $x = \sqrt{40} = 2\sqrt{10}$ (cm) 이다.

 ${f 30.}$ 다음 직사각형의 두 꼭짓점 ${f B},\ {f D}$ 에서 대각 선 AC 에 내린 수선의 발을 각각 $Q,\ P$ 라 할 때, $\overline{\mathrm{PQ}}$ 의 길이를 구하여라.

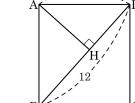
▶ 답:

▷ 정답: 2.8 cm

ΔABC 는 직각삼각형이므로

 $\overline{AC} = 10(cm)$ 이다.

 $\overline{AQ} = \overline{PC}$ 이고 $\triangle ABQ$ 와 $\triangle ABC$ 는 닮음이므로 $\overline{AB} : \overline{AC} = \overline{AQ} : \overline{AB}$ 에서 $\overline{AB}^2 = \overline{AQ} \times \overline{AC}$ 이므로


 $\underline{\mathrm{cm}}$

 $\overline{\mathrm{AQ}} = \frac{36}{10} = 3.6 \mathrm{(\,cm)}$ 이다.

따라서 $\overline{PQ} = 10 - 3.6 - 3.6 = 2.8 (cm)$ 이다.

31. 다음 그림에서 □ABCD 는 직사각형이고, $\overline{AH} \perp \overline{BD}$ 이다. \overline{AH} 의 길이를 구하여라.

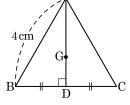
- ① $16\sqrt{5}$ ② $8\sqrt{5}$ ③ $\frac{4\sqrt{5}}{3}$ ④ $\frac{16\sqrt{5}}{3}$

$$\triangle ABD$$
 에서 $\overline{AB} = \sqrt{12^2 - 8^2} = 4\sqrt{5}$
 $\triangle ABD = \frac{1}{-} \times \overline{BD} \times \overline{AH} = \frac{1}{-} \times \overline{AB} \times \overline{AD}$ 이끄로

$$\triangle ABD = \frac{1}{2} \times \overline{BD} \times \overline{AH} = \frac{1}{2} \times \overline{AB} \times \overline{AD} \cap \square = \frac{1}{2} \times 12 \times \overline{AH} = \frac{1}{2} \times 4\sqrt{5} \times 8$$

$$\therefore \overline{AH} = \frac{8\sqrt{5}}{3}$$

$$\overline{AH} = \frac{8\sqrt{5}}{3}$$

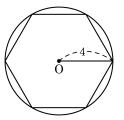

32. 넓이가 $18\sqrt{3}$ cm² 인 정삼각형의 높이를 구하면?

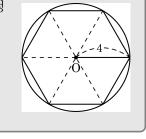
① $3\sqrt{6} \text{ cm}$ ② $6\sqrt{6} \text{ cm}$ ③ $3\sqrt{2} \text{ cm}$ (4) $6\sqrt{2}$ cm (5) $6\sqrt{3}$ cm

정삼각형의 한 변의 길이를 *a* 라 하면,

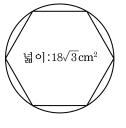
지 나라서 높이 =
$$\frac{\sqrt{3}}{4}a^2 = 18\sqrt{3}$$
, $a^2 = 72$, $a = 6\sqrt{2}$ cm 따라서 높이 = $\frac{\sqrt{3}}{2} \times 6\sqrt{2} = 3\sqrt{6}$ (cm) 이다.

33. 그림과 같이 한 변의 길이가 $4 \, \mathrm{cm}$ 인 정삼각 형의 한 중선을 \overline{AD} , 무게중심을 G 라고 할 때, \overline{GD} 의 길이는 $\frac{a\sqrt{b}}{3}$ 이다. a+b 의 값을 구하여라. (단, b는 최소의 자연수) ①5 26 37 48 59





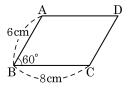
$$\overline{\text{GD}} = 2\sqrt{3} \times 4 = 2\sqrt{3}$$


$$\overline{AD} = \frac{\sqrt{3}}{2} \times 4 = 2\sqrt{3} \text{ (cm)}$$
 $\overline{GD} = 2\sqrt{3} \times \frac{1}{3} = \frac{2\sqrt{3}}{3}$
따라서 $a+b=2+3=5$

- $oldsymbol{34}$. 다음 그림과 같이 반지름의 길이가 $oldsymbol{4}$ 인 원 $oldsymbol{O}$ 에 내접하는 정육각형의 넓이를 구하면?
 - - ① 24 ② $24\sqrt{3}$ ③ $28\sqrt{3}$
 - ④ $24\sqrt{6}$ ⑤ $48\sqrt{6}$

 ${f 35}$. 원 안에 넓이가 $18\sqrt{3}\,{
m cm}^2$ 인 정육각형이 내 접해있다. 이 원의 반지름의 길이는?

① $\sqrt{3}$ cm ④ $4\sqrt{3}$ cm


 $2\sqrt{3}$ cm $5\sqrt{3}$ cm

 $3\sqrt{3}$ cm

정육각형은 6개의 작은 정삼각형으로 이루어져 있으므로 정삼 각형의 1개의 변의 길이를 a 라 하면 $\frac{\sqrt{3}}{4}a^2 = 3\sqrt{3}, \ a^2 = 12, \ a = 2\sqrt{3} \,\mathrm{cm}$

이다.

36. 다음 그림의 평행사변형은 두 변의 길이가 각각 $6\,\mathrm{cm}$, $8\,\mathrm{cm}$ 이고 한 내각의 크기가 $60\,^\circ$ 이다. 이 도형의 넓이를 구하면?

 $24\sqrt{3}\,\mathrm{cm}^2$

해설

② $20\sqrt{3}\,\mathrm{cm}^2$ $4 12\sqrt{3} \text{ cm}^2$ $5 8\sqrt{3} \text{ cm}^2$

 $3 16 \sqrt{3} \, \text{cm}^2$

 $\overline{AH} = 3\sqrt{3} (\,\mathrm{cm})$

 $\therefore (掃) = 8 \times 3\sqrt{3} = 24\sqrt{3} (\text{cm}^2)$

- 37. 꼭짓점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라 하고, $\angle B = 45^\circ$, $\overline{AB} = 12$, $\overline{AH} = x$, $\overline{BC} = y$ 인 직각삼각형 ABC 가 다음 과 같다고 할 때, x + y 의 값은?
- H 12
- ① $15\sqrt{2}$ ② $16\sqrt{2}$ ③ $17\sqrt{2}$ ④ $18\sqrt{2}$ ⑤ $19\sqrt{2}$

 $\Delta {
m ABC}$ 는 직각이등변삼각형이므로 $\overline{
m AC}=12$, $y=\overline{
m BC}=12\sqrt{2}$

해설

 $\triangle ABH$ 도 직각이등변삼각형이므로 $x = \frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$

$$\therefore x + y = 12\sqrt{2} + 6\sqrt{2} = 18\sqrt{2}$$

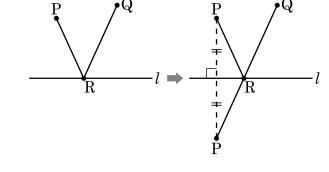
.

38. 이차함수 $y = x^2 + 4x - 8$ 의 꼭짓점으로부터 원점까지의 거리는?

① $\sqrt{37}$ ② $2\sqrt{37}$ ③ $3\sqrt{37}$ ④ $4\sqrt{37}$ ⑤ $5\sqrt{37}$

 $y = x^2 + 4x - 8 = (x + 2)^2 - 12$ 꼭짓점 P(-2, -12)와 원점 사이의 거리 $\overline{OP} = \sqrt{(-2)^2 + (-12)^2} = \sqrt{148} = 2\sqrt{37}$

해설


39. 이차함수 $y = -\frac{1}{12}x^2 + x - 2$ 의 꼭짓점과 점 (3, -3) 사이의 거리는?

① 1 ② 2 ③ 3 ④ 4 ⑤5

해결
$$y = -\frac{1}{12}x^2 + x - 2$$

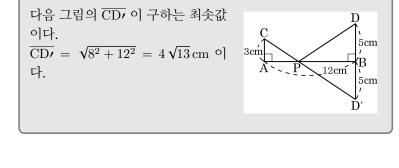
$$y = -\frac{1}{12}(x - 6)^2 + 1 \text{ 이므로 꼭짓점의 좌표는 } (6, 1) \text{ 이다.}$$
 따라서 꼭짓점과 점 $(3, -3)$ 사이의 거리는
$$\sqrt{(6-3)^2 + \left\{1 - (-3)\right\}^2} = \sqrt{25} = 5 \text{ 이다.}$$

$$V(0 - 0) + \{1 - (-0)\} = V20 = 0$$

- 40. 다음 그림과 같이 점 P, Q가 있을 때, $\overline{PR}+\overline{RQ}$ 의 값이 최소가 되도록 직선 l위에 점 R를 잡는 과정이다. 빈칸에 알맞은 것은?
 - 직선 \square 에 대한 점 P의 대칭점 P' 을 잡고 선분 \square 가 직선 l과 만나는 점을 🗌로 잡는다.

(3) *l*, P'Q, R

- ① l, PQ, Q ② l, PQ, R
 - $\textcircled{4} \ \ Q, \ PQ, \ Q \\ \textcircled{5} \ \ Q, \ P'Q, \ R$


l에 대한 점 P의 대칭점 P'을 잡고 선분 P'Q가 직선 l과 만나는

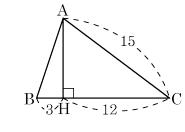
점을 R로 잡는다.

41. 다음 그림에서 $\overline{CA} \perp \overline{AB}$, $\overline{DB} \perp \overline{AB}$ 이고, 점 P 는 \overline{AB} 위를 움직인다. $\overline{CA} = 3 \text{cm}$, $\overline{DB} = 5 \text{cm}$, $\overline{AB} = 12 \text{cm}$ 일 때, $\overline{CP} + \overline{PD}$ 의 최솟값을 $a\sqrt{b}$ cm 라고 할 때, a+b 의 값을 구하여라. (단, b는 최소의 자연수)

▷ 정답: a+b = 17

▶ 답:

42. 다음 직사각형 ABCD 에서 $\overline{AE}=\overline{CE}$ 가 되도록 점 E 를 잡고, $\overline{AE}=\overline{AF}$ 가 되도록 점 F 를 잡을 때, $\square AECF$ 의 넓이를 구하 여라.


<u>cm²</u>

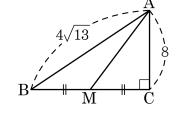
▷ 정답: 20<u>cm²</u>

 $\overline{\mathrm{CE}} = x(\mathrm{cm})$ 라 하면

해설

 $x^{2} = 4^{2} + (8 - x)^{2} : x = 5$:: $\Box AECF = 5 \times 4 = 20(cm^{2})$ 43. 다음 그림과 같은 삼각형 ABC 에 대하여 $\overline{\mathrm{AB}}$ 의 길이는?

 $4 3\sqrt{10}$

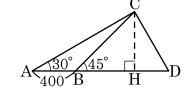

⑤ 5

 $\triangle AHC$ 에서 $\overline{AH}=\sqrt{15^2-12^2}=\sqrt{81}=9$ $\triangle ABH$ 에서 $\overline{AB}=\sqrt{9^2+3^2}=\sqrt{90}=3\sqrt{10}$

① $7\sqrt{2}$ ② 13 ③ $6\sqrt{2}$

해설

44. 다음 직각삼각형 ABC 에서 점 M 이 변 BC 의 중점일 때, $\overline{\mathrm{AM}}$ 의 길이를 구하여라.



▶ 답:

➢ 정답: 10

 $\overline{BC}^2 = (4\sqrt{13})^2 - 8^2 = 144$ $\therefore \overline{BC} = 12, \overline{MC} = 6$ $\therefore \overline{AM} = \sqrt{8^2 + 6^2} = 10$

45. 다음 조건을 만족하는 $\overline{\mathrm{CH}}$ 의 길이를 구하면?

- $\ \, \ \, \overline{AB}=400,\, \angle A=30\,^{\circ},\, \angle CBH=45\,^{\circ}$ $\quad \ \, \underline{ } \quad \, \underline{ \mathrm{CH}} \bot \overline{\mathrm{AH}}$

- 3 200($\sqrt{3} + 1$)

① $50(\sqrt{3}+1)$ ② $100(\sqrt{3}+1)$

④ $300(\sqrt{3}+1)$ ⑤ $350(\sqrt{3}+1)$

 $\overline{\mathrm{CH}} = x$ 라 하면 $\overline{\mathrm{BH}} = x$

 $\triangle ACH$ 에서 $\overline{CH}: \overline{AH} = 1: \sqrt{3}$

 $x: (400+x) = 1: \sqrt{3}$

 $400 + x = \sqrt{3}x$ $(\sqrt{3} - 1)x = 400$

 $x = 200(\sqrt{3} + 1)$

46. 이차함수 $y = -\frac{1}{4}x^2 + 2x - 1$ 의 그래프의 꼭짓점과 y 축과의 교점, 그리고 원점을 이어 삼각형을 만들었다. 이 삼각형의 둘레의 길이가 $a+b\sqrt{c}$ 일 때, a+b+c 의 값은?(단, a,b,c는 유리수, c는 최소의 자연수)

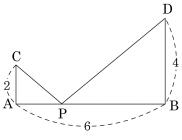
① 6 ② 8 ③ 10 ④ 12 ⑤ 14

 $y = -\frac{1}{4}x^2 + 2x - 1$ $y = -\frac{1}{4}(x - 4)^2 + 3$ 이므로

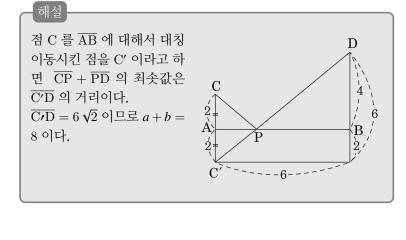
꼭짓점의 좌표는 (4, 3) 이다.

y 축과의 교점은 x 좌표가 0 일 때이므로 (0, −1)

따라서 꼭짓점 - 원점의 거리


 $= \sqrt{(4-0)^2 + (3-0)^2} = 5$ y 축과의 교점-원점의 거리 = 1

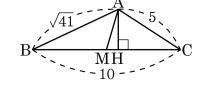
꼭짓점-y 축과의 교점의 거리


 $= \sqrt{(4-0)^2 + (3-(-1))^2} = 4\sqrt{2}$ \therefore 삼각형의 둘레= $6+4\sqrt{2}$ 이므로

a+b+c 의 값은 12 이다.

47. 다음 그림과 같이 점 P는 AB 위를 움직이고 CA⊥AB, DB⊥AB 일 때, CP + PD 의 최솟값을 a√b 라고 할 때, a + b 의 값을 구하여 라. (단, b는 최소의 자연수)

답 :▷ 정답 : a + b = 8



48. 삼각형 ABC 의 꼭짓점 A, B, C 에서 마주보는 변에 내린 수선의 발을 각각 D, E, F 라 할 때, $\overline{AE}^2 + \overline{BF}^2 + \overline{CD}^2 = 100$ 이다. 이때 $\overline{AF}^2 + \overline{BD}^2 + \overline{CE}^2$ 의 값을 구하여라.

답:

▷ 정답: 100

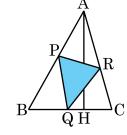
49. 다음 그림의 삼각형 ABC 에서 $\overline{\mathrm{AH}} \bot \overline{\mathrm{BC}}, \ \overline{\mathrm{BM}} = \overline{\mathrm{MC}}$ 이고, $\overline{\mathrm{AB}} =$ $\sqrt{41}$, $\overline{\mathrm{BC}}=10$, $\overline{\mathrm{CA}}=5$ 일 때, $\overline{\mathrm{AM}}$ 의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $2\sqrt{2}$

 $\overline{\text{HC}} = x$ 라 하면 $\triangle AHC$ 에서 $\overline{AH}^2 = 5^2 - x^2$ 또, $\triangle ABH$ 에서 $\overline{AH}^2 = (\sqrt{41})^2 - (10 - x)^2$ $\therefore 5^2 - x^2 = (\sqrt{41})^2 - (10 - x)^2$ $25 - x^2 = 41 - (100 - 20x + x^2)$

 $25 - 41 + 100 = 20x \quad \therefore x = \frac{21}{5}$


따라서 ΔAMH 에서

 $\overline{\mathrm{MC}} = 5$ ∴ $\overline{\mathrm{MH}} = 5 - \frac{21}{5} = \frac{4}{5}$ ○] 코

 $\overline{AH} = \sqrt{5^2 - \left(\frac{21}{5}\right)^2} = \frac{\sqrt{184}}{5}$ 이다. $\overline{\mathrm{AM}}^2 = \overline{\mathrm{AH}}^2 + \overline{\mathrm{MH}}^2 = \frac{184}{25} + \frac{16}{25} = 8$

따라서 $\overline{\mathrm{AM}} = 2\sqrt{2}$ 이다.

50. 다음과 같이 $\angle A=45^\circ$ 인 예각삼각형 ABC 의 점 A 에서 변 BC 에 내린 수선의 발 H 에 대하여 $\overline{AH}=4$ 일 때, 삼각형 ABC 에 내접하는 삼각형 PQR 의 둘레의 길이의 최솟값을 구하여라.

답:
 > 정답: 4√2

Q', Q'' 라 하면 $\overline{PQ} = \overline{PQ'}, \overline{RQ} = \overline{RQ''}$ $\angle Q'AQ'' = 2(\bullet + \times) = 90^\circ$ 이고, $\triangle PQR$ 의 둘레의 길이는 $\overline{PQ} + \overline{QR} + \overline{RP} = \overline{PQ'} + \overline{Q''R} + \overline{RP} \ge \overline{Q'Q''}$ 그런데 $\overline{AQ'} = \overline{AQ''} = \overline{AQ}$ 이므로 \overline{AQ} 가 최소일 때, 즉 \overline{AQ} 가 점 A 에서 변 BC 에 내린 수선일 때, $\overline{Q'Q''}$ 가 최소가 된다. 이때, $\overline{AQ} = \overline{AH} = 4$ 이므로 $\triangle PQR$ 의 둘레의 길이의 최솟값은 $\overline{Q'Q''} = \sqrt{4^2 + 4^2} = 4\sqrt{2}$ 이다.