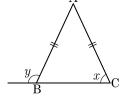
1. 다음 그림과 같은 ΔABC에서 $\overline{AB} = \overline{AC}$ 일 때, 2x + 2y의 크기를 구하여라.



➢ 정답: 180 º

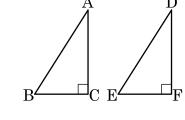
 $\triangle ABC$ 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로 $\angle ABC = \angle C = \angle x$

해설

▶ 답:

 $\therefore \angle x + \angle y = 180^{\circ}$

2. 다음 그림의 두 직각삼각형 ABC, DEF 가 합동이 되는 경우를 보기에서 모두 찾아라.



 \bigcirc $\overline{BC} = \overline{EF}, \overline{AC} = \overline{DF}$

© BC = EF, AC

▶ 답:

답:

■ 답:

▶ 답:

▷ 정답: ⑤

▷ 정답: □

▷ 정답: □

▷ 정답: ②

해섴

삼각형이 합동이 될 조건 SAS, ASA 직각삼각형이 합동이 될 조건 RHA, RHS

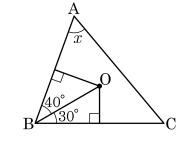
① $\overline{AB} = \overline{DE}$, $\overline{AC} = \overline{DF}$ ⇒ RHS 합동 ② $\angle A = \angle D$, $\overline{AC} = \overline{DF}$ ⇒ ASA 합동

© $\overline{BC} = \overline{EF}$, $\overline{AC} = \overline{DF} \Rightarrow SAS$ 합동

(a) $\overline{AB} = \overline{DE}$, $\angle B = \angle E$ ⇒ RHA 합동

0120 22, 22 22 7 10222 1

3. 다음 그림에서 점 O 가 ΔABC 의 외심일 때, $\angle x$ 의 크기를 구하여라.



 답:

 ▷ 정답:
 60 °

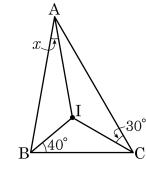
✓ 8日: 00 _

해설

다음 그림과 같이 ∠BCO = 30°, ∠OAB = 40° 이코 ∠OCA = 90° - (40° + 30°) = 20° 이다.

A
40°
B
30° □ 30° C
마라서 ∠x = 40° + 20° = 60° 이다.

4. 다음 그림에서 점 I가 ΔABC의 내심일 때 ∠x의 크기를 구하여라.



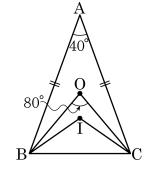
 답:

 ▷ 정답: 20°

해설 삼각형의 세 내각의 이등분선의 교점이 삼각형의 내심이다.

따라서 ∠BAI + ∠CBI + ∠ACI = 90°이므로 ∠x + 40° + 30° = 90 ∴ ∠x = 20°

 $\mathbf{5}$. 다음 그림은 이등변삼각형 ABC 이다. 점 O 는 외심, 점 I 는 내심이고, $\angle A=40^\circ$, $\angle O=80^\circ$ 일 때, $\angle IBO$ 의 크기를 구하여라.



➢ 정답 : 15 º

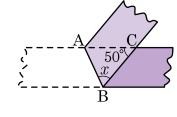
답:

 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC = 110^{\circ}$ $\overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이므로 $\Delta\mathrm{OBC}$ 는 이등변 삼각형이다.

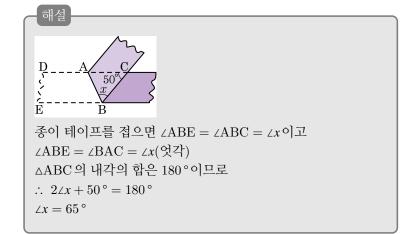
 $\angle \mathrm{OBC} = 50^{\circ}$ 또한 이등변삼각형의 외심과 내심은 꼭지각의 이등분선 위에

있<u>으</u>므로 ∠IBC = 35° 이다. \therefore $\angle OBI = \angle OBC - \angle IBC = 50^{\circ} - 35^{\circ} = 15^{\circ}$

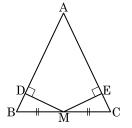
6. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle ACB = 50^{\circ}$ 일 때, $\angle x$ 의 크기는?



① 45° ② 50° ③ 55° ④ 60° ⑤ 65°



다음 그림과 같이 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 인 이등변삼각형 7. ABC 에서 \overline{BC} 의 중점을 M 이라 하자. 점 M 에서 $\overline{AB}, \overline{AC}$ 에 내린 수선의 발을 각각 D,E 라 할 때, $\overline{\mathrm{MD}}=\overline{\mathrm{ME}}$ 임을 나타내는 과정에서 필요한 조건이 <u>아닌</u> 것은?



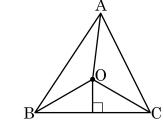
 $\boxed{\mathfrak{B}\overline{\mathrm{D}}} = \overline{\mathrm{C}\overline{\mathrm{E}}}$

- ② $\angle B = \angle C$ $\textcircled{4} \angle BDM = \angle CEM$
- ⑤ RHA 합동

 ΔBMD 와 ΔCME 에서 $\angle B=\angle C$, $\angle BDM=\angle CEM=90\,^{\circ}$,

 $\overline{\mathrm{BM}} = \overline{\mathrm{MC}}$ $\therefore \triangle \mathrm{BMD} \equiv \triangle \mathrm{CME} \; (\mathrm{RHA} \; \mbox{합동})$

8. 다음 그림에서 점 O 는 삼각형 ABC 의 외심이고, 점 O 에서 \overline{BC} 에 내린 수선의 발을 D 라 할 때, \overline{OA} , \overline{OB} , \overline{OC} 중 길이가 가장 긴 선분은?



 \bigcirc \overline{OA}

 \bigcirc \overline{OB} ④모두 같다.⑤ 알 수 없다.

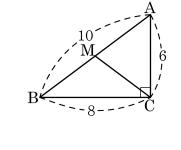
 $\odot \overline{OC}$

해설

점 O 가 삼각형의 외심이므로 각각의 세 꼭짓점 A, B, C 에

이르는 거리는 모두 같다.

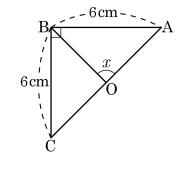
9. 다음 그림과 같은 직각삼각형 ABC의 빗변의 중점을 M이라고 할 때, $\overline{
m MC}$ 의 길이는?



① 2 ② 3 ③ 4 ④ 5 ⑤ 6

점 M은 직각삼각형 ABC의 외심이므로 $\overline{\text{MA}} = \overline{\text{MB}} = \overline{\text{MC}}$ 이다. $: \overline{\text{MC}} = 5$

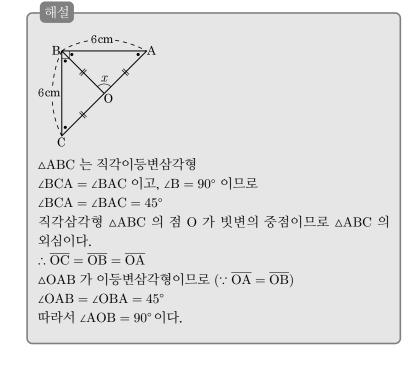
10. 다음 그림의 직각삼각형 ABC 에서 점 O 가 빗변의 중점일 때, $\angle x$ 의 크기를 구하면?



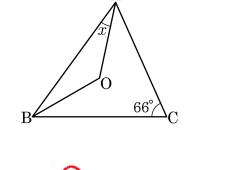
4 85°

② 75° ③ 80°

① 70°



11. 다음 그림에서 점 O 는 \triangle ABC의 외심이다. \angle ACB = 66 °일 때 \angle BAO의 크기는?



① 16° ② 20°

③24°

④ 30°

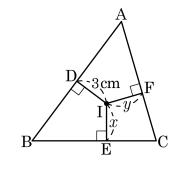
⑤ 33°

 $\angle AOB = 66^{\circ} \times 2 = 132^{\circ}$

 $\overline{OA} = \overline{OB}$ 이므로 $\triangle ABO$ 에서 $2x + 132^{\circ} = 180^{\circ}$

 $\therefore x = 24^{\circ}$

12. 다음 그림에서 점 I 는 \triangle ABC의 내심이다. $\overline{\text{ID}}=3\text{cm}$ 일 때, x+y의 길이는?



① 4cm

② 5cm

(3)6cm

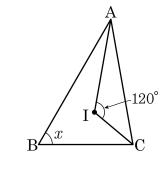
4 7cm

⑤ 8cm

삼각형의 내심에서 세 변에 이르는 거리는 같으므로 x = y =

3(cm)이다. ∴ x + y = 6(cm)

13. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때 $\angle x$ 의 크기를 구하여라.

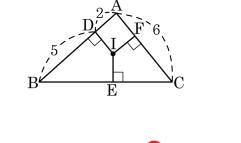


▶ 답:

▷ 정답: 60^o

 $\frac{x}{2} + 90^{\circ} = 120^{\circ},$ $\frac{x}{2} = 30^{\circ}$ $\therefore x = 60^{\circ}$

14. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. \overline{BC} 의 길이는?



① 6 ② 7 ③ 8

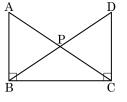
⑤ 10

 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}} = 2$ 이코, $\overline{\mathrm{BD}} = \overline{\mathrm{BE}} = 5$ 이다.

 $\overline{\text{CE}} = \overline{\text{AC}} - \overline{\text{AF}} = 6 - 2 = 4$ 이므로

 $\overline{BC} = \overline{BE} + \overline{EC} = 9$

15. 다음 그림과 같은 두 직각삼각형에서 $\overline{ ext{AC}}$ 와 $\overline{\mathrm{BD}}$ 의 교점을 P라 할 때, $\overline{\mathrm{AB}}=\overline{\mathrm{DC}}$, $\overline{\mathrm{AC}}=$ $\overline{
m DB}$ 이면 $\Delta
m PBC$ 는 어떤 삼각형인가?



- ① 정삼각형
- ② 직각이등변삼각형 ④ 직각삼각형
- ③ 이등변삼각형 ⑤ 예각삼각형

해설

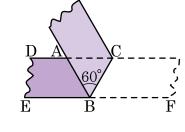
△ABC 와 △DCB 에서 $i\)\overline{AC}=\overline{DB}$ ii) $\angle ABC = \angle DCB = 90^{\circ}$

 $\mathrm{iii})\overline{\mathrm{AB}}=\overline{\mathrm{DC}}$

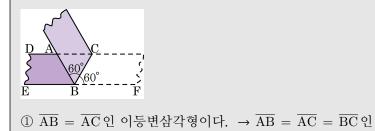
i), ii), iii) 에 의해 △ABC ≡ △DCB

따라서 ∠DBC = ∠ACB 이므로 ΔPBC 는 이등변삼각형

16. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle ABC = 60^{\circ}$ 일 때, 다음 설명 중 <u>옳지</u> 않은 것은?

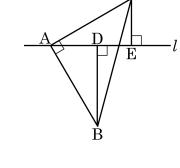


- (1) AB = AC 인 이등변삼각형이다.
 (2) BC = AB 인 이등변삼각형이다.
- ③ △ABC 는 정삼각형이다.
- ④ ∠ABE = ∠CBF 이다. ⑤ ∠DAB = 100°이다.



- 정삼각형이다. ② $\overline{BC}=\overline{AB}$ 인 이등변삼각형이다. $\rightarrow \overline{AB}=\overline{AC}=\overline{BC}$ 인 정삼각형이다.
- ③ ∠ABC = ∠CBF = 60° (종이 접은 각) ∠CBF = ∠ACB = 60° (엇각) ∴ ∠CAB = 60°
- △ABC는 내각이 모두 60°인 정삼각형이다. ④ ∠ABE = 180° - ∠ABC - ∠CBF = 180° - 60° - 60° = 60° 이다. ∴ ∠ABE = ∠CBF
- ⑤ $\angle DAB = 100$ °이다. $\rightarrow \angle CAB = 60$ $\therefore \angle DAB = 120$ °

17. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각이등변삼각형 ABC 가 있다. 두 점 B, C 에서 점 A 를 지나는 직선 l에 내린 수선의 발을 각각 D, E 라 하고, $\overline{\mathrm{BD}}=a,\;\overline{\mathrm{CE}}=b$ 라 할 때, $\overline{\mathrm{DE}}$ 의 길이를 $a,\;b$ 를 사용한 식으로 나타내어라.



▶ 답:

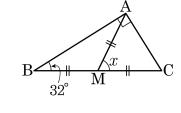
 Δ CAE 와 Δ ABD 에서

해설

 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$, $\angle \mathrm{ADB} = \angle \mathrm{CEA}$, $\angle BAD = 90^{\circ} - \angle CAE = \angle ACE$ 이므로 $\triangle CAE \equiv \triangle ABD (RHA 합동)$ $\therefore \overline{AE} = \overline{BD} = a, \overline{AD} = b$

 $\therefore \overline{DE} = \overline{AE} - \overline{AD} = a - b$

18. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 빗변의 중점을 \mathbf{M} 이라 하자. $\angle \mathbf{ABC} = 32^\circ$ 일 때, $\angle x$ 의 크기는?



① 60°

② 62°

4 66°

⑤ 68°

직각삼각형의 빗변의 중점인 점 M 은 외심이므로 $\overline{\mathrm{MB}} = \overline{\mathrm{MA}} =$

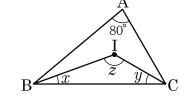
해설

MC 이다. $\triangle ABM$ 은 이등변삼각형이므로 ($\because \overline{MB} = \overline{MA}$) $\angle MBA = \angle MAB = 32^{\circ}$

두 내각의 합은 나머지 한 각의 외각의 크기와 같으므로

 $\angle AMC = \angle MBA + \angle MAB = 32^{\circ} + 32^{\circ} = 64^{\circ}$ 이다.

19. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때, $\angle z - (\angle x + \angle y) = ($) $^{\circ}$ 이다. () 안에 알맞은 수를 써라.

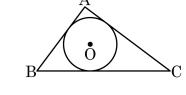


▶ 답: ▷ 정답: 80

 $2\angle x + 2\angle y + 80^{\circ} = 180^{\circ}, \ \angle x + \angle y = 50^{\circ}$ $\angle z = 180\,^{\circ} - 50\,^{\circ} = 130\,^{\circ}$

 $\therefore \ \angle z - (\angle x + \angle y) = 130^{\circ} - 50^{\circ} = 80^{\circ}$

 $oldsymbol{20}$. 다음 그림과 같이 ΔABC 에서 점 O 는 내심이다. 내접원의 반지름이 $3\,\mathrm{cm}$ 이고, $\Delta\mathrm{ABC}$ 의 넓이가 $36\,\mathrm{cm}^2$ 일 때, $\Delta\mathrm{ABC}$ 의 둘레의 길이를 구하여라

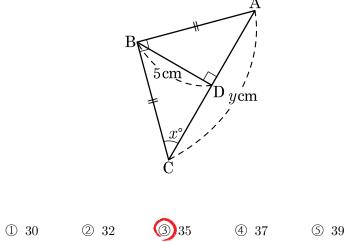


 \bigcirc 24 cm $212 \, \mathrm{cm}$ $318 \, \mathrm{cm}$ $421 \, \mathrm{cm}$ $\bigcirc 9 \, \mathrm{cm}$

삼각형 세변의 길이를 각각 a, b, c 라 하면

 $\triangle ABC = \triangle OBC + \triangle OAC + \triangle OAB$ $= \frac{1}{2} \times 3 \times a + \frac{1}{2} \times 3 \times b + \frac{1}{2} \times 3 \times c$ $= \frac{1}{2} \times 3 \times (a + b + c) = 36$ 따라서 △ABC 의 둘레의 길이는 24 cm

 ${f 21}$. 다음 그림과 같이 $\overline{
m AB}=\overline{
m BC}$, $\angle
m B=90\,^{\circ}$ 인 직각이등변삼각형 m ABC에서 $\angle B$ 의 이등분선과 \overline{AC} 의 교점을 D라 하자. 이 때, x-y의 값은?



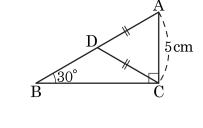
$$\angle C = \frac{1}{2}(180^{\circ} - 90^{\circ}) = 45^{\circ}$$

 $\therefore x = 45$
 $\angle C = \angle CBD = 45^{\circ}$ 이므로

 $\Delta {
m CBD}$ 는 $\overline{
m BD}=\overline{
m CD}=5\,{
m cm}$ 인 이등변삼각형이고, 점 D는 $\overline{
m AC}$ 의 중점이므로 y=10

 $\therefore x - y = 45 - 10 = 35$

22. 다음 그림과 같이 $\angle C=90\,^\circ$ 인 직각삼각형 ABC 에서 $\overline{AD}=\overline{CD}$ 일 때, \overline{AB} 의 길이는?



① 7cm ② 8cm ③ 9cm ④ 10cm ⑤ 11cm

 $\triangle ABC$ 에서 $\angle BAC = 180 \degree - (90 \degree + 30 \degree) = 60 \degree$

해설

△ACD 는 이등변삼각형이므로 ∠DAC = ∠DCA

그런데 $\angle DAC = \angle BAC$ 이므로 $\angle DAC = \angle DCA = 60^\circ$

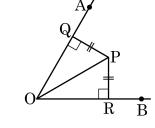
또 ∠CDA = 60 ° 이므로 △ACD 는 정삼각형 ∠C = 90 ° 이고 ∠DCA = 60 ° 이므로

 $\angle BCD = 90^{\circ} - 60^{\circ} = 30^{\circ}$

따라서 $\triangle BCD$ 는 이등변삼각형 $\overline{AD} = \overline{CD} = \overline{BD}$ 이므로

 $\overline{AB} = \overline{CD} = \overline{BD} = 5 + 5 = 10(\text{cm})$

23. 다음 그림과 같이 $\angle AOB$ 의 내부의 한 점 P 에서 각 변에 수선을 그어 그 교점을 Q, R 이라 하자. $\overline{PQ} = \overline{PR}$ 이라면, \overline{OP} 는 $\angle AOB$ 의 이등분선임을 증명하는 과정에서 $\triangle \mathrm{QOP} \equiv \triangle \mathrm{ROP}$ 임을 보이게 된다. 이 때 사용되는 삼각형의 합동 조건은?



② 한 변과 그 양끝각이 같다.

① 두 변과 그 사이 끼인각이 같다.

- ③ 세 변의 길이가 같다.
- ④ 직각삼각형의 빗변과 한 변의 길이가 각각 같다.

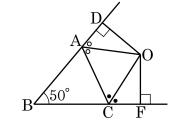
같은 RHS 합동이다.

- ⑤ 직각삼각형의 빗변과 한 예각의 크기가 각각 같다.

 $\overline{\mathrm{OP}}$ 는 공통이고 $\overline{\mathrm{PQ}}$ = $\overline{\mathrm{PR}}$ 이므로, 빗변과 다른 한 변의 길이가

해설 _

 ${f 24}$. 다음 그림과 같은 ΔABC 에서 $\angle A$ 의 외각의 이등분선과 $\angle C$ 의 외각의 이등분선의 교점을 O 라 하고, $\angle B=50^\circ$ 일 때, $\angle AOC$ 의 크기를 구하여라. (단, 단위는 생략한다.)

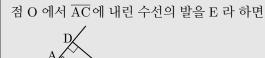


1 65

② 63 ③ 61

4 60

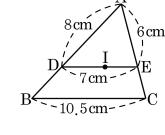
⑤ 59



 $\triangle \text{ODA} \equiv \triangle \text{OEA} \text{ (RHA합동) 이므로 } \angle \text{AOD} = \angle \text{AOE}$

 $\triangle OEC \equiv \triangle OFC \ (RHA합동) 이므로 \angle COE = \angle COF$ $\Box DBFO$ 에서 $\angle B + \angle F + \angle DOF + \angle D = 360^{\circ}$ $\angle AOE = \angle a$, $\angle COE = \angle b$ 라 하면 $50^\circ + 90^\circ + 2\angle a + 2\angle b + 90^\circ = 360^\circ :: \angle a + \angle b = 65^\circ :: \angle AOC =$ 65°

25. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고 \overline{DE} // \overline{BC} 일 때, $\triangle ABC$ 의 둘레의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 31.5 cm

답:

△DBI 에서

해설

점 I 가 내심이므로 $\angle DBI = \angle IBC \cdots$ \bigcirc $\overline{\mathrm{DE}} \, / / \, \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{IBC} = \angle \mathrm{DIB} \, (rac{\circ}{2} rac{\circ}{2}) \, \cdots$ \square

⑤, ⓒ에서 $\angle DBI = \angle DIB$ 이므로 $\triangle DBI$ 는 이등변삼각형이다.

 $\overline{\rm DB}=\overline{\rm DI}$ 같은 방법으로 △EIC 도 이등변삼각형이다.

 $\overline{\mathrm{EC}} = \overline{\mathrm{EI}}$

따라서 △ABC 의 둘레의 길이는 $\overline{AB} + \overline{BC} + \overline{AC} = \overline{AD} + \overline{AE} + \overline{DE} + \overline{BC}$

= 8 + 6 + 7 + 10.5 = 31.5 (cm)