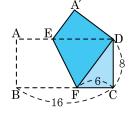

1. 다음 그림에서 □ABCD 는 한 변의 길이가 2 인 정사각형이고 $\overline{AP}=\overline{BQ}=\overline{CR}=\overline{DS}=1$ 이다. 사각형 PQRS 의 넓이는?

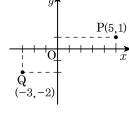

- $4 \ 5 \sqrt{3}$ $5 \ 2 \sqrt{3}$
- ① $5 3\sqrt{2}$ ② $4 \sqrt{3}$ ③ $4 2\sqrt{3}$

□PQRS 는 정사각형이므로

 $\overline{AQ} = \sqrt{2^2 - 1^2} = \sqrt{3}$ $\therefore \overline{PQ} = \sqrt{3} - 1$

 $\therefore \Box PQRS = (\sqrt{3} - 1)^2 = 4 - 2\sqrt{3}$

2. 다음 그림은 직사각형 ABCD 를 점 B 가 점 D 에 오도록 접은 것이다. DF 의 길이를 구하여라.



▶ 답:

▷ 정답: 10

 $\overline{BF} = \overline{FD}$ $\therefore \overline{BF} = 16 - 6 = 10 = \overline{DF}$

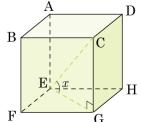
다음 그림에서 두 점 P(5, 1), Q(-3, -2) 사이의 거리는?

⑤ 11

④ $\sqrt{65}$

① $\sqrt{5}$ ② 5 $\sqrt{3}$ $\sqrt{73}$

3.


 $\overline{PQ} = \sqrt{\{5 - (-3)\}^2 + \{1 - (-2)\}^2}$ $= \sqrt{8^2 + 3^2} = \sqrt{73}$

4. 다음 🗅 안을 각각 순서대로 바르게 나타낸 것은? 가로, 세로, 높이가 각각 3,4,5 인 직육면체의 대각선의 길이는 이고, 한 모서리의 길이가 3인 정사면체의 높이는 ______ 부피는 이다.

- ① $5\sqrt{2}$, $\sqrt{6}$, $\frac{9\sqrt{2}}{4}$ ② $5\sqrt{10}$, $2\sqrt{6}$, $\frac{3\sqrt{2}}{4}$ ③ $5\sqrt{2}$, $2\sqrt{6}$, $\frac{9\sqrt{2}}{4}$ ④ $\frac{5\sqrt{2}}{3}$, $\sqrt{6}$, $\frac{9\sqrt{2}}{4}$ ⑤ $\frac{5\sqrt{2}}{3}$, $\sqrt{6}$, $\frac{3\sqrt{2}}{4}$

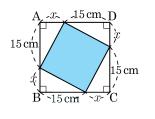
- (1) 대각선의 길이를 l 이라하면
- $l = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$
- (2)한 모서리의 길이가 3인 정사면체의 높이를 h , 부피를 V 라고 하면 $h = \frac{\sqrt{6}}{3} \times 3 = \sqrt{6}, V = \frac{\sqrt{2}}{12} \times 3^3 = \frac{9\sqrt{2}}{4}$

- **5.** 다음 그림은 한 변의 길이가 2 인 정육면 체이다. $\angle CEG = x$ 일 때, $\sin x + \cos x$ 의
 - 값을 구하면?

- ① $\frac{\sqrt{3}}{\frac{3}{3}}$ ② $\frac{2\sqrt{3}}{\frac{3}{3}}$ ② $\frac{\sqrt{6} \sqrt{3}}{3}$
- $3\frac{2}{3}$

해설

 $\overline{\text{CE}} = 2\sqrt{3}$ $\overline{\text{EG}} = 2\sqrt{2}$ $\overline{\text{CG}} = 2$ 이므로


 $\sin x + \cos x = \frac{2}{2\sqrt{3}} + \frac{2\sqrt{2}}{2\sqrt{3}} = \frac{\sqrt{3} + \sqrt{6}}{3} \text{ or}.$

다음 중 옳지 <u>않은</u> 것은? **6.**

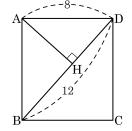
- $3 \cos 0^{\circ} = 1, \cos 90^{\circ} = 0$
- ① $\sin 0^{\circ} = 0$, $\sin 90^{\circ} = 1$ ② $\sin 60^{\circ} = \cos 30^{\circ} = \frac{1}{2}$ $4 \tan 0^{\circ} = 0, \tan 45^{\circ} = 1$

② $\sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$, $\sin 60^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$

 다음 그림에서 □ABCD 는 정사각형이다. 어두운 부분의 넓이가 289 cm² 일 때, x 의 값을 구하여라.

▷ 정답: 8cm

▶ 답:

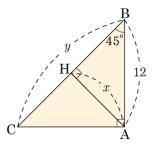

어두운 부분은 정사각형이므로 한 변의 길이가 $\sqrt{289}\,\mathrm{cm}$ 이다.

해설

피타고라스 정리에서 (√289)² = (15)² + x²이므로 $x^2+15^2=289$, $x^2=64$ ∴ x=8(cm)

 $\underline{\mathrm{cm}}$

- 다음 그림에서 □ABCD 는 직사각형이고, ĀĦ ⊥ BD 이다. ĀĦ 의 길이를 구하여라. 8.
 - ① $16\sqrt{5}$ ② $8\sqrt{5}$ ③ $\frac{4\sqrt{5}}{3}$ ④ $\frac{16\sqrt{5}}{3}$


$$\triangle ABD$$
 에서 $\overline{AB} = \sqrt{12^2 - 8^2} = 4\sqrt{5}$
 $\triangle ABD = \frac{1}{2} \times \overline{BD} \times \overline{AH} = \frac{1}{2} \times \overline{AB} \times \overline{AD}$

$$\triangle ABD = \frac{1}{2} \times \overline{BD} \times \overline{AH} = \frac{1}{2} \times \overline{AB} \times \overline{AD} \cap \square = \frac{1}{2} \times 12 \times \overline{AH} = \frac{1}{2} \times 4\sqrt{5} \times 8$$

$$\therefore \overline{AH} = \frac{8\sqrt{5}}{3}$$

$$\therefore AH = \frac{1}{3}$$

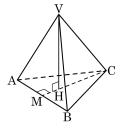
9. 꼭짓점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라 하고, $\angle B = 45^\circ$, $\overline{AB} = 12$, $\overline{AH} = x$, $\overline{BC} = y$ 인 직각삼각형 ABC 가 다음 과 같다고 할 때, x + y 의 값은?

① $15\sqrt{2}$ ② $16\sqrt{2}$ ③ $17\sqrt{2}$ ④ $18\sqrt{2}$ ⑤ $19\sqrt{2}$

해설 ΔABC 는 직각이등변삼각형이므로

 $\overline{AC} = 12$, $y = \overline{BC} = 12\sqrt{2}$ $\triangle ABH$ 도 직각이등변삼각형이므로 $x = \frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$

$$x = \frac{1}{\sqrt{2}} = \frac{1}{2} = 0.52$$


$$\therefore x + y = 12\sqrt{2} + 6\sqrt{2} = 18\sqrt{2}$$

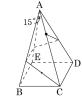
. 대각선의 길이가 10cm 인 정육면체에서 한 모서리의 길이는?

 $\frac{10\sqrt{3}}{3}$ cm ② $5\sqrt{2}$ cm ③ $5\sqrt{3}$ cm ④ $10\sqrt{2}$ cm

한 모서리의 길이를 a 라 하면 $\sqrt{3}a=10$ $\therefore a=\frac{10\sqrt{3}}{3}(\text{cm})$ 이다.

 ${f 11}$. 다음 그림의 정사면체 V – ABC 에서 높이 $\overline{
m VH}$ 가 $2\sqrt{6}$ 일 때, 정사면체의 부피는?

① 6 ② $6\sqrt{2}$ ③ 18 ④ $18\sqrt{2}$


⑤ $32\sqrt{2}$

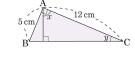
a 정사면체의 한 모서리의 길이를 a 라 하면,

정사면체의 높이 $\overline{\mathrm{VH}} = \frac{\sqrt{6}}{3} a = 2\sqrt{6}$ $\therefore a = 6$

따라서 정사면체의 부피는 $\frac{\sqrt{2}}{12}a^3 = \frac{\sqrt{2}}{12} \times 6^3 = 18\sqrt{2}$ 이다.

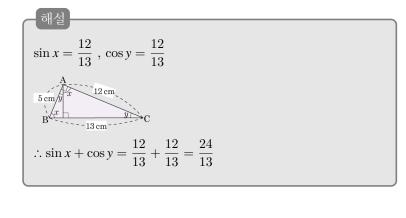
12. 다음 그림과 같이 $\overline{AB}=12\mathrm{cm}$, $\angle BAC=15^\circ$ 인 정사각뿔이 있다. 점 C 에서 옆면을 지나 \overline{AC} 에 이르는 최단거리를 구하면?

- ① $3\sqrt{3}$ cm ② $6\sqrt{3}$ cm
- ② $4\sqrt{3}$ cm ⑤ $7\sqrt{3}$ cm
- $3 5\sqrt{3}$ cm
- **(4)** 0 **V**3C.



옆면의 전개도를 그려 생각하면, 점 C 에서 $\overline{AC'}$ 에 내린 수선 \overline{CH} 의 길이가 최단거리가 된다. $\overline{AC}:\overline{CH}=2:\sqrt{3}$ 이므로

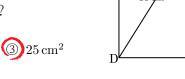
 $\therefore \overline{CH} = 12 \times \frac{\sqrt{3}}{2} = 6\sqrt{3} \text{(cm)}$


2

13. 다음 그림에서 $\sin x + \cos y$ 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{24}{13}$

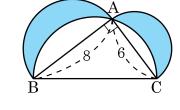

14. x = 30°라고 할 때, $\sin x$, $\cos x$, $\tan x$ 의 대소를 비교한 것은?

 $4 \sin x < \cos x = \tan x$

 $\sin 30^{\circ} = \frac{1}{2} = \frac{3}{6}$, $\cos 30^{\circ} = \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{6}$, $\tan 30^{\circ} = \frac{\sqrt{3}}{3} = \frac{3\sqrt{3}}{3}$

 $\therefore \sin x < \tan x < \cos x$

- 15. 다음 그림은 $\angle C = 90$ ° 인 직각삼각형 ABC 의 변 $\overline{\mathrm{AB}}$ 를 한 변으로 하는 정사각형을 그린 것이다. $\overline{AB}=13\,\mathrm{cm},\,\Delta\mathrm{ACD}=72\,\mathrm{cm}^2$ 일 때, \overline{BC} 를 한 변으로 하는 정사각형의 넓이는? $325\,\mathrm{cm}^2$ $\textcircled{1} \ 21\,\mathrm{cm}^2$ $22\,\mathrm{cm}^2$



 40 cm^2 \bigcirc 40 cm²

해설

 ΔACD 는 \overline{AC} 를 한 변으로 하는 정사각형 넓이의 $\frac{1}{2}$ 이므로 \overline{AC} 를 한 변으로 가지는 정사각형의 넓이는 $144\,\mathrm{cm}^2$ 이다. 또, $\Box ADEB = 13^2 = 169 \; (\mathrm{\,cm^2})$ 이므로 $\overline{\mathrm{BC}}$ 를 한 변으로 하는 정사각형의 넓이는 $169 - 144 = 25 \text{ (cm}^2)$ 이다.

16. 다음 그림은 직각삼각형 ABC 의 세 변을 각각 지름으로 하는 세 개의 반원을 그린 것이다. $\overline{AB}=8,\overline{AC}=6$ 일 때, 색칠한 부분의 넓이를 구하여라.

▶ 답: ▷ 정답: 24

해설

(색칠한 부분의 넓이) = △ABC

 $= \frac{1}{2} \times 8 \times 6$ = 24

- 17. 다음 그림과 같이 언덕 위에 국기 게양대가 서 있다. A 지점에서 국기 게양대의 꼭대기 C 를 올려다 본 각이 60°이고, A 지점에서 국기 게 양대 방향으로 12 m 걸어간 B 지점에서부터 오 르막이 시작된다. 오르막 $\overline{\mathrm{BD}}$ 의 길이가 $4\sqrt{3}\,\mathrm{m}$ 이고 오르막의 경사가 30°일 때, 국기 게양대의 높이 $\overline{\mathrm{CD}}$ 는? ② $16 \sqrt{3} \, (m)$ ① $6\sqrt{3}$ (m)
 - $4.68\sqrt{3}$ (m)

 $\begin{array}{c|c}
 & 4\sqrt{3} \text{ m} & D \\
\hline
 & 12 \text{ m} & B & H \\
 & 30^{\circ}
\end{array}$

- ⑤ $70\sqrt{3}$ (m)

해설

 $3 20 \sqrt{3}$ (m)

= $12 + 4\sqrt{3} \times \frac{\sqrt{3}}{2}$ = 18 (m)

 $\overline{\rm DH} = 4\sqrt{3}\sin 30\,^\circ = 4\sqrt{3}\times\frac{1}{2} = 2\sqrt{3}\ (\rm m)$

 $\therefore \ \overline{\rm CD} = \overline{\rm CH} - \overline{\rm DH} = 18\,\sqrt{3} - 2\,\sqrt{3} = 16\,\sqrt{3}$ (m)

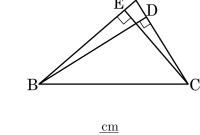
 $\overline{\text{CH}} = \overline{\text{AH}} \cdot \tan 60 = 18\sqrt{3} \text{ (m)}$

18. x 에 관한 이차방정식 $2x^2-11x+a=0$ 의 한 근이 $\sin 90^\circ+\cos 0^\circ$ 일 때, a 의 값을 구하면?

① 14 ② 13 ③ 12 ④ 11 ⑤ 10

이차방정식 $2x^2-11x+a=0$ 에 x=2 를 대입하면, $2\times 2^2-1$ $11 \times 2 + a = 0$ 8 - 22 + a = 0, a = 14

 $\overline{AB}=12,\;\overline{BC}=9$ 인 삼각형 ABC 의 변 AB, BC 의 중점을 각각 D, E 이라 할 때, 선분 AE와 선분 CD가 수직이 된다. 이때 삼각형 ABC 의 둘레의 길이를 구하여라.


▶ 답: ightharpoonup 정답: $21+3\sqrt{5}$

 $\overline{\mathrm{AC}}=x$ 라 하면 삼각형의 중점연결 정리에 의하여 $\overline{\mathrm{DE}}=rac{1}{2}x$ $\Box DECA$ 에서 $\overline{AE} \perp \overline{DC}$ 이므로 $\overline{AD^2} + \overline{EC^2} = \overline{DE^2} + \overline{AC^2}$ $6^2 + \left(\frac{9}{2}\right)^2 = \left(\frac{1}{2}x\right)^2 + x^2$

$$\begin{vmatrix} 6^2 + \left(\frac{9}{2}\right) & = \left(\frac{1}{2}x\right) + x^2 \\ \therefore & x = 3\sqrt{5} \end{vmatrix}$$

따라서 삼각형 ABC 의 둘레의 길이는 $12+9+3\sqrt{5}=21+3\sqrt{5}$ 이다.

20. 다음 그림의 $\triangle ABC$ 에서 두 점 D, E 는 꼭짓점 B, C 에서 각각의 대변에 내린 수선의 발이다. $\overline{AB}=13\,\mathrm{cm}$, $\overline{AC}=10\,\mathrm{cm}$, $\overline{CD}=8\,\mathrm{cm}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.

▶ 답: ▷ 정답: √229 cm

해설

 $\overline{\mathrm{AD}} = 10 - 8 = 2 (\mathrm{\,cm})$ 이므로

 $\triangle ABD$ 에서 $\overline{BD}^2 = \overline{AB}^2 - \overline{AD}^2 = 13^2 - 2^2 = 165$ $\triangle BCD$ 에서 $\overline{BC} = x(cm)$ 라 하면

 $x^2 = \overline{\mathrm{BD}}^2 + \overline{\mathrm{CD}}^2 = 165 + 64 = 229$ x > 0 이므로 $x = \sqrt{229} \mathrm{(cm)}$