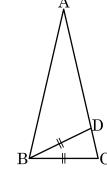
1. 세 직선 y = x + 1, y = 3x - 1, y = 2x + a 가 한 점에서 만난다고 할 때, a 의 값을 구하면?

2. 세 직선 x = 3, y = 4, x + y = a가 한 점에서 만날 때, 상수 a 의 값은?

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

3. 두 일차함수 y = ax - 6 , y = -x + 6 의 그래프의 교점이 일차함수 y = 2x + 9 의 그래프 위에 있을 때, a 의 값을 구하면?

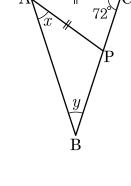

① -13 ② -7 ③ -1 ④ 1 ⑤ 7

- **4.** A 주머니에는 붉은 공이 1 개, 흰 공이 2 개 들어있고, B 주머니에는 붉은 공이 3 개, 흰 공이 2 개가 들어 있다. A 주머니와 B 주머니에서 각각 공을 한 개씩 꺼낼 때, 서로 다른 색의 공이 나올 확률은? ① $\frac{2}{5}$ ② $\frac{2}{15}$ ③ $\frac{4}{15}$ ④ $\frac{8}{15}$ ⑤ $\frac{6}{25}$

- 다음 그림과 같이 3개의 검은 공과 2개의 흰 **5.** 공이 들어 있는 주머니에서 한 번 꺼낸 것을 다 시 집어넣고 연속하여 1 개씩 2 개의 공을 꺼낼 때, 서로 같은 색의 공이 나올 확률은?
 - ① $\frac{6}{25}$ ④ $\frac{3}{4}$ ② $\frac{13}{25}$ ③ $\frac{1}{12}$ $3 \frac{1}{4}$

6. 주머니 속에 모양과 크기가 같은 검은 공 4개와 흰 공 3개가 들어 있다. 한 개의 공을 꺼낸 다음 다시 넣어 또 하나의 공을 꺼낼 때, 두 번 모두 흰 공이 나올 확률은? ① $\frac{12}{49}$ ② $\frac{6}{49}$ ③ $\frac{9}{49}$ ④ $\frac{8}{49}$ ⑤ $\frac{16}{49}$

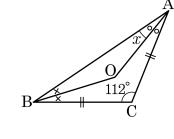
7. $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC 에서 $\overline{BC}=\overline{BD}$ 이고 $\angle DBC=26^\circ$ 일 때, $\angle A$ 를 구하면?


③ 30°

⑤ 72°

4 52°

① 13° ② 26°


8. 다음 그림에서 $\triangle ABC$ 는 $\overline{BA}=\overline{BC}$ 인 이등변삼각형이다. $\overline{AC}=\overline{AP}$ 이고 $\angle C=72^\circ$ 일 때, $\angle x+\angle y$ 의 값은?

4 70°

① 64° ② 66° ③ 68°

9. $\overline{AC} = \overline{BC}$ 인 이등변삼각형 ABC 에서 $\angle ACB = 112^\circ$ 일 때, $\angle x$ 의 크기는?

⑤ 19°

4 18°

③ 17°

① 15° ② 16°

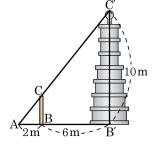
10. 키가 $150 \mathrm{cm}$ 인 민수가 $3 \mathrm{m}$ 높이의 농구대 옆에 서 있다. 민수의 그림 자의 길이가 1m 일 때, 농구대의 그림자는?

③ 2m

④ 2.5m

⑤ 2.6m

② 1.5m


① 1m

- 11. 컴퓨터 모니터의 크기는 화면의 대각선의 길이로 나타낸다. 18 인치 모니터의 둘레가 54cm 일 때, 20 인치 모니터의 가로의 길이와 세로의 길이의 합을 구하면?
 - ① 25cm ② 30cm ③ 35cm ④ 40cm ⑤ 45cm

12. 막대의 높이를 재기 위하여 탑의 그림자 끝 A 에서 2m 떨어진 지점 B 에 막대를 세워 그 그림자의 끝이 탑의 그림자의 끝 과 일치하게 하였다. 막대와 탑 사이의 거리가 6m 일 때, 막대의 높이를 구하면?

② 3 m

 \bigcirc 2.5 m

 $\ \ \ \ \ 4.2\,\mathrm{m}$

 $3.3\,\mathrm{m}$

④ 4 m