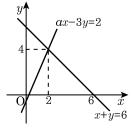
- 다음 그림은 연립일차방정식 $\begin{cases} x+ay=a\\ 2x-y=b \end{cases}$ 해를 구한 것이다. a^2+ab+b^2 의 값을 구하면? 1.
- ② -12 ① -14 3 11 **⑤**13 4 12


연립방정식의 해가 x = -1, y = 2이므로 이것을 각각의 방정식

에 대입하면 -1 + 2a = a, -2 - 2 = b

따라서 a = 1, b = -4 $\therefore a^2 + ab + b^2 = 1 - 4 + 16 = 13$

2.

다음 그림은 연립방정식 $\begin{cases} ax - 3y = 2 \\ x + y = 6 \end{cases}$ 풀기 위하여 두 방정식의 그래프를 그린 것이다. 이때, 상수 a의 값은?

① 3 ② 5

4 8

⑤ 9

2a - 12 = 2, 2a = 14, a = 7

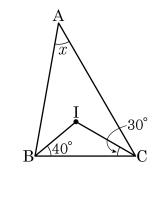
3. 세 직선 $x=3,\ y=4,\ x+y=a$ 가 한 점에서 만날 때, 상수 a 의 값은?

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

x + y = a 식에 x = 3, y = 4 를 대입하면 a = 3 + 4 = 7

4. 두 일차함수 y = ax - 6, y = -x + 6 의 그래프의 교점이 일차함수 y = 2x + 9 의 그래프 위에 있을 때, a 의 값을 구하면?

① -13 ② -7 ③ -1 ④ 1 ⑤ 7


세 그래프가 한 점에서 만나므로 연립방정식

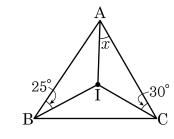
 $\begin{cases} y = -x + 6 & \cdots ① \\ y = 2x + 9 & \cdots ② \end{cases} 를 풀면$ 해는 x = -1, y = 7이고, 이를 y = ax - 6 에 대입하여 풀면

7 = -a - 6

 $\therefore a = -13$

5. 다음 그림에서 점 I가 삼각형의 내심일 때, $\angle x$ 의 크기는?

① 20° ② 30°


③40°

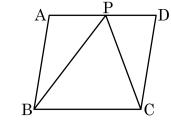
④ 50°

⑤ 60°

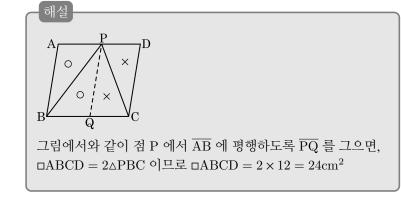
 $\angle x = 180^{\circ} - (40^{\circ} + 30^{\circ}) \times 2 = 40^{\circ}$

다음 그림에서 점 I는 $\triangle ABC$ 의 내심일 때, $\angle x$ 값은 얼마인가? **6.**

 $\textcircled{1} \ 30^{\circ} \qquad \textcircled{2} \ 31^{\circ} \qquad \textcircled{3} \ 32^{\circ} \qquad \textcircled{4} \ 33^{\circ}$


점 I가 \triangle ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A 이다. 점 I가 세 내각의 이등분선의 교점이므로 $\angle IBC = \angle ABI = 25^\circ$ 이다.

삼각형의 내각의 합은 180°이므로 ∠BIC = 180°-30°-25°=


125 °이다. $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A, 125^{\circ} = 90^{\circ} + \frac{1}{2} \angle A, \angle A = 70^{\circ}$

$$\therefore \ \angle x = \angle \text{CAI} = \frac{1}{2} \angle \text{A} = 35^{\circ}$$

7. 평행사변형 ABCD 에서 $\overline{\rm AD}$ 에 임의의 점 P 를 잡았을 때, $\Delta \rm PBC = 12cm^2$ 이다. $□ \rm ABCD$ 의 넓이를 구하면?

- ① 6cm^2 ④ 30cm^2
- $2 18 \text{cm}^2$
- 324cm^2
- \bigcirc 36cm²

8. $\triangle ABC$ 에서 $\overline{BD}:\overline{DC}=1:2$ 이다. $\triangle ABC=21cm^2$ 일 때, $\triangle ADC$ 의 넓이는?

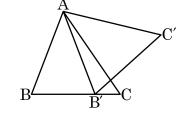
- ① 7cm^2 ④ 14cm^2
- 2 8cm^2
- $3 \frac{21}{2} \text{cm}^2$

140

 \Im 16cm^2

두 삼각형의 높이는 같고 $\overline{\mathrm{BD}}$: $\overline{\mathrm{BC}}$ = 1:3 이므로 $\Delta\mathrm{ADC}$:

 $\triangle ABC = 2:3$ 따라서 $\triangle ADC = \triangle ABC \times \frac{2}{3} = 14(cm^2)$


- A, B, C, D, E 다섯 팀이 다른 팀과 한 번씩 농구 경기를 할 때, 모두 9. 몇 번의 경기를 하여야 하는가?
 - ②10번 ③ 12번 ④ 16번 ⑤ 20번 ① 5번

5팀 중 2팀을 뽑는 경우이므로 시합은 $\dfrac{5\times4}{2}=10$ (번) 이루어 진다.

- 10. 윷짝 4 개를 던져서 개가 나오는 경우의 수는? (단, 배와 등이 나올 가능성은 같다.)
 - ① 4 가지 ② 6 가지 ③ 8 가지 ④ 10 가지 ⑤ 12 가지

그 개는 윷 네 개 중에서 2 개가 뒤집어 져야하므로 개가 나오는 경우의 수는 $\frac{4\times3}{2\times1}=6($ 가지)


11. 다음 그림에서 $\triangle AB'C'$ 은 $\triangle ABC$ 를 회전이동한 것이다. 이때, $\triangle ABB'$ 은 어떤 삼각형인가?

- ③ 정삼각형
- ②이등변삼각형 ④ 직각이등변삼각형
- ⑤ 알수없다.

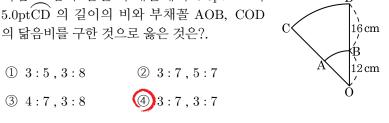
 \overline{AB} 가 $\overline{AB'}$ 로 옮겨 간 것이므로 $\overline{AB}=\overline{AB'}$ 이므로 이등변삼각 형이다.

12. 다음 그림에서 $\triangle ABC$ 는 $\overline{BA}=\overline{BC}$ 인 이등변삼각형이다. $\angle B=128^\circ$ 이고 $\angle BCP=\angle ACP$ 일 때, $\angle CPB$ 의 크기는?

 $\textcircled{1}39^{\circ}$ 2 40° 3 41° 42° 5 43°

 $\triangle ABC$ 는 $\overline{BA} = \overline{BC}$ 인 이등변삼각형이므로

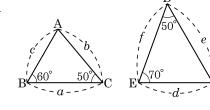
 $\angle BCA = \frac{1}{2}(180^\circ - 128^\circ) = 26^\circ$


또 ∠BCP = ∠ACP 이므로

 $\angle BCP = \angle ACP = \frac{1}{2} \times 26^\circ = 13^\circ$

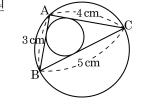
 $\therefore \angle CPB = 26^{\circ} + 13^{\circ} = 39^{\circ}$

- 13. 다음 그림과 같은 부채꼴에서 5.0ptÂB 와 5.0ptCD 의 길이의 비와 부채꼴 AOB, COD 의 닮음비를 구한 것으로 옳은 것은?.


 - \bigcirc 5:7,3:7

길이비는 닮음비와 같으므로 $5.0 pt\widehat{AB}: 5.0 pt\widehat{CD} = \overline{OB}: \overline{OD} =$

12:28=3:7

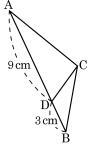

- 14. 다음 그림의 두 삼각형은 닮 은 도형이다. 두 삼각형의 닮 음비는?
 - $\bigcirc b: f$ ① a:d
 - $\textcircled{4} \ a:f$ $\Im c: e$
 - \bigcirc b:d

해설 △ABC ∽ △EFD 이므로

닮음비는 a:e=b:f=c:d

- 15. 다음 그림과 같은 직각삼각형 ABC 의 내접원 과 외접원의 닮음비는?
 - ① 1:3 ② 2:3 ③2:54 5:9
 5:11

내접원의 반지름의 길이를 r라 하면

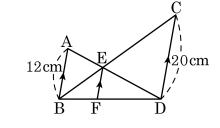

해설

 $\frac{3+4+5}{2}\times r=\frac{1}{2}\times 3\times 4$, r=1(cm)

외접원의 반지름의 길이는 $\frac{5}{2} = 2.5 (\mathrm{cm})$

∴ 내접원과 외접원의 닮음비는 1 : 2.5 = 2 : 5 이다.

- 16. 그림 속 두 삼각형 $\triangle ABC$ 와 $\triangle CBD$ 가 닮은 도형일 때, $\overline{\mathrm{BC}}$ 의 길이는?
 - $\bigcirc 6 \, \mathrm{cm}$ \bigcirc 5 cm
- $34 \, \mathrm{cm}$
- $4 \ 3 \, \mathrm{cm}$
- \bigcirc 2 cm

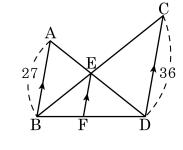


 $\triangle ABC \circlearrowleft \triangle CBD$ $\overline{\mathrm{AB}}:\overline{\mathrm{CB}}=\overline{\mathrm{BC}}:\overline{\mathrm{BD}}$

 $12 : \overline{BC} = \overline{BC} : 3$ $\overline{BC}^2 = 36$ $\therefore \overline{BC} = 6 \text{ cm } (\because \overline{BC} > 0)$

해설

17. EF 의 길이는 무엇인가?



- ④ 10 cm
- ① $\frac{13}{2}$ cm ② $\frac{15}{2}$ cm \bigcirc 12 cm
- 3 8 cm

해설 $\triangle ABE$ \hookrightarrow $\triangle DCE$ 이므로 \overline{BE} : $\overline{CE} = \overline{AB}$: $\overline{DC} = 12$: 20 = 3 : 5

 $\overline{\mathrm{BE}}:\overline{\mathrm{BC}}=3:8$ 이므로 $\overline{EF} : \overline{CD} = 3 : 8$ $\overline{EF} : 20 = 3 : 8$ $\overline{EF} = \frac{60}{8} = \frac{15}{2} \text{ cm}$

18. 다음 그림에서 \overline{BF} : \overline{FD} 의 비는?

③ 3:5 ④ 4:5 ⑤ 5:6

 $\triangle ABE \bigcirc \triangle DCE$ 이므로 $\overline{AE} : \overline{DE} = \overline{AB} : \overline{CD} = 3 : 4, \ \overline{AE} : \overline{DE} = \overline{BF} : \overline{FD} = 3 : 4$

① 2:3

해설