

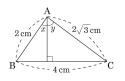
- (2
 - $\frac{2}{9}$

①sin 30°

② cos 30°

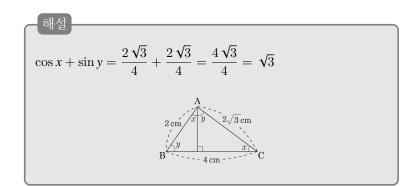
다음 삼각비의 값이 가장 작은 것은?

3 sin 90°


(4) tan 45°

⑤ tan 50°

해설


 $\sin 30^\circ = \frac{1}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$, $\sin 90^\circ = 1$, $\tan 45^\circ = 1$, $\tan 50^\circ > \tan 45^\circ = 1$ 이므로 가장 작은 것은 $\sin 30^\circ$ 이다.

다음 그림에서 $\cos x + \sin y$ 의 값을 구하여라.

- ① $\sqrt{2}$ ② $2\sqrt{2}$

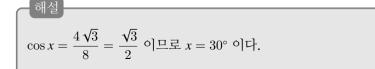
- $\bigcirc 3 \sqrt{3}$ $\bigcirc 4 2\sqrt{3}$ $\bigcirc 3 \sqrt{3}$

⑤ $\tan 60^{\circ} = \sqrt{3}$ 이다.

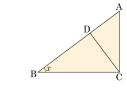
① $\sin 30^{\circ} = \frac{1}{2}$ ② $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ ② $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ ③ $\tan 60^{\circ} = \frac{\sqrt{3}}{3}$

다음 중 옳지 않은 것은?

(3) $\tan 45^{\circ} = 1$


6. 좌표평면 위에 두 점 A(5, 3), B(2, 1) 을 지나는 직선이 x 축의 양의 방향과 이루는 각의 크기를 θ 라 할 때, $\tan \theta$ 의 값을 구하면?

①
$$\frac{3}{4}$$
 ② $\frac{4}{5}$ ③ $\frac{4\sqrt{13}}{13}$ ③ $\frac{5\sqrt{13}}{13}$

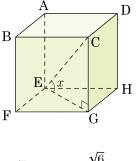

해설
$$\tan \theta = \frac{(높 \circ)}{(밑 \dag \dot{\theta})} = \frac{(y \circ) \dag \dot{\theta} \dot{\theta} \dot{\theta} \dot{\theta}}{(x \circ) \dag \dot{\theta} \dot{\theta} \dot{\theta} \dot{\theta}} = |(② 차 함수의 기울기)| \circ | \Box$$
 로 $\tan \theta = \frac{3-1}{5-2} = \frac{2}{3}$ 이다.

7. $\sin 0^{\circ} \times \tan 0^{\circ} - \cos 0^{\circ}$ 의 값을 A , $\sin 90^{\circ} \times \cos 90^{\circ} + \tan 0^{\circ}$ 의 값을 B 라 할 때, B – A 의 값은?

해설
$$A = 0 \times 0 - 1 = -1$$
, $B = 1 \times 0 + 0 = 0$ 이므로 $B - A = 0 - (-1) = 1$

9. 다음 그림에서 $\angle C = 90^{\circ}$, $\overline{AB} \bot \overline{CD}$ 이고 $\angle B = x$ 일 때, 다음 중 옳지 않은 것은?

 $\tan x = \frac{\overline{\text{CD}}}{\overline{\text{AD}}}$


①
$$\sin x = \frac{\overline{AC}}{\frac{\overline{AB}}{\overline{AB}}}$$
 ② $\cos x = \frac{\overline{CD}}{\frac{\overline{AC}}{\overline{AC}}}$
④ $\sin x = \frac{\overline{AD}}{\overline{AC}}$ ⑤ $\cos x = \frac{\overline{BD}}{\overline{BC}}$

$$4 \sin x = \frac{AD}{AC} \qquad 5 \cos x = \frac{BD}{BC}$$

$$3 \tan x = \frac{\overline{AC}}{\overline{BC}} = \frac{\overline{AD}}{\overline{CD}} = \frac{\overline{CD}}{\overline{BD}}$$

10. 다음 그림은 한 변의 길이가 a 인 정육면체이다. 대각선 CE 와 밑면의 대각선 EG 가이루는 ∠CEG 의 크기를 x 라 할 때, sin x의 값은?

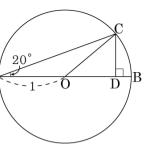
 $\therefore \sin x = \frac{a}{\sqrt{3}a} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \text{ or}.$

①
$$\frac{\sqrt{2}}{2}$$
 ② $\frac{\sqrt{3}}{3}$ ③ $\sqrt{2}a$ ④ $\sqrt{3}a$ ⑤ $\frac{\sqrt{6}}{3}$

해설
$$E = \sqrt{3}a$$

$$\overline{EG} = \sqrt{a^2 + a^2} = \sqrt{2}a$$

$$\overline{CE}^2 = (\sqrt{2}a)^2 + a^2 = 3a^2$$
이므로 $\overline{CE} = \sqrt{3}a$


11. 다음 그림에서 원 O 의 반지름의 길이가 5,
$$\overline{BC} = 6$$
 일 때, $\cos A$ 의 값을 구하면?

$$\frac{4}{5}$$

$$\angle C$$
 는 지름의 원주각 $\angle C = 90^{\circ}$
 $\overline{AC} = \sqrt{10^2 - 6^2} = 8$

$$\therefore \cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{8}{10} = \frac{4}{5}$$

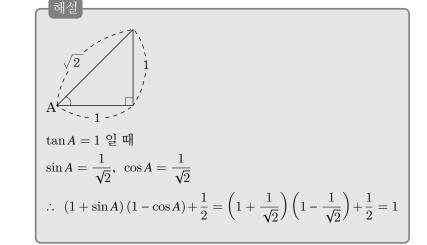
12. 다음 그림과 같이 반지름의 길이가 1 인 원 위의 점 C에서 지름 AB에 내린 수선의 발을 D라 할 때, 다음 중 옳지 않은 것은?

(1)
$$\overline{CD} = \sin 40^{\circ}$$

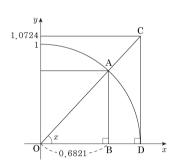
$$\overline{BD} = 1 - \cos 40^{\circ}$$

$$\boxed{3}\overline{AC} = \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$$

해설


$$\sin 40^{\circ}$$
4 $\triangle CAD = \frac{1}{2} \sin 40^{\circ} \times (1 + \cos 40^{\circ})$

$$(5) \ \triangle CAO = \frac{1}{2} \sin 40^{\circ}$$


③
$$\triangle CAD$$
에서 $\overline{AC} = \frac{\overline{CD}}{\sin 20^{\circ}} = \frac{\sin 40^{\circ}}{\sin 20^{\circ}}$

13.
$$\tan A = 1$$
 일 때, $(1 + \sin A)(1 - \cos A) + \frac{1}{2}$ 의 값은?(단, $0^{\circ} < A < 90^{\circ}$)

①
$$\frac{1}{2}$$
 ② 1 ③ $\sqrt{2}$ ④ $\sqrt{3}$ ⑤ $\frac{3\sqrt{3}}{2}$

14. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 표를 이용하 여 BD 의 길이는?

①
$$-0.724$$

 $\dot{r} = 0.6821$

해설
$$\overline{BD} = \overline{OD} - \overline{OB}$$

$$\overline{AO} = 1$$
, $\cos x = \frac{\overline{BO}}{\overline{AO}} = \frac{\overline{BO}}{1} = 0.6821$
 $\therefore \overline{BD} = 1 - \cos x = 1 - 0.6821 = 0.3179$

15. $\cos(2x-30^\circ)=\frac{\sqrt{3}}{2}$ 을 만족시키는 x 의 값을 <u>모두</u> 구하면? (단, $0^\circ \le x \le 90^\circ$)

$$\cos(2x - 30^{\circ}) = \frac{\sqrt{3}}{2} = \cos 30^{\circ} = \cos(-30^{\circ})$$
2x - 30° = 30°, 2x - 30° = -30°
∴ x = 30°, 0°