1. 성적이 가장 고른 학급은? (단, 각 학급의 학생 수는 모두 같다.)

학급	A	В	C	D	E
평균(점)	7	8	6	7	6
표준편차(점)	1	2	1.5	2.4	0.4

표준편차가 작을수록 변량이 평균 주위에 더 집중된다. 따라서

성적이 가장 고른 학급은 표준편차가 가장 작은 E이다.

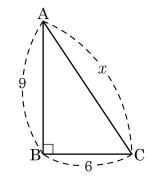
2. 다음 표는 S 중학교 5 개의 학급에 대한 학생들의 국어 성적의 평균과 표준편차를 나타낸 것이다. 다섯 학급 중 성적이 가장 고른 학급은? (단, 각 학급의 학생 수는 모두 같다.)

이름	\boldsymbol{A}	В	С	D	E
평균(점)	75	67	73	70	82
표준편차(점)	2.1	$2\sqrt{2}$	1.3	1.4	$\sqrt{5}$

해설

이름	A	В	С	D	E
표준편차(점)	$2.1 = \sqrt{4.41}$	$2\sqrt{2} = \sqrt{8}$	$1.3 = \sqrt{1.69}$	$1.4 = \sqrt{1.96}$	$\sqrt{5}$
따라서 표준편차가 가장 작은 학급은 C 이다.					

3. 다음 그림에서 x의 값은?



① $3\sqrt{3}$ ② $2\sqrt{13}$ ③ $2\sqrt{14}$ ④ $3\sqrt{13}$ ⑤ $3\sqrt{14}$

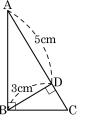
해설 $x = \sqrt{9^2 + 6^2}$ $= \sqrt{81 + 36} = \sqrt{117}$ $= 3\sqrt{13}$

- 세변의 길이가 각각 다음과 같을 때, 직각삼각형이 <u>아닌</u> 것은? 4.
 - ① 3,5,4
 - 4 $\sqrt{15}, 6, \sqrt{21}$ 3 $4, 5, 2\sqrt{2}$
- ② $4, 2, 2\sqrt{3}$ ③ $\sqrt{3}, 2\sqrt{2}, \sqrt{5}$

해설 세 변의 길이가 a,b,c 인 삼각형에서 가장 긴 변의 길이를 c 라고

하고, $a^2+b^2=c^2$ 이 성립하면 직각삼각형이고, $a^2+b^2\neq c^2$ 이면 직각삼각형이 아니다. ⑤에서 가장 긴 변은 5 인데, $4^2+(2\sqrt{2}) \neq 5^2$ 이므로 직각삼각 형이 아니다.

- 다음 그림과 같이 $\angle B = 90^\circ$ 인 $\triangle ABC$ 에서 $\overline{AD} =$ **5.** $5\,\mathrm{cm}$, $\overline{\mathrm{BD}}=3\,\mathrm{cm}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이는?



$$\overline{\text{CD}} = \frac{3^2}{\text{CD}} = \frac{9}{\text{C}} \text{(cm)}$$

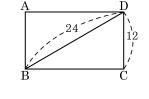
$$CD = \frac{1}{5} = \frac{1}{5} (cm)$$

$$\triangle ABC \text{ oil } A | \overline{BD^2} = \overline{AD} \cdot \overline{CD}$$

$$\overline{CD} = \frac{3^2}{5} = \frac{9}{5} (\text{cm})$$

$$x = \sqrt{3^2 + \left(\frac{9}{5}\right)^2} = \frac{3\sqrt{34}}{5}$$

6. 다음 그림을 보고 □ABCD 의 넓이는?



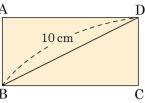
- ① $141\sqrt{3}$ (4) $144\sqrt{3}$ (5) $145\sqrt{3}$
- ② $142\sqrt{3}$
- ③ $143\sqrt{3}$

 $\overline{BC} = \sqrt{24^2 - 12^2} = 12\sqrt{3}$

해설

∴ (□ABCD의 넓이) = $12\sqrt{3} \times 12 = 144\sqrt{3}$

7. 다음 직사각형 ABCD 에서 가로의 길 이는 세로의 길이의 2배이다. 대각선 의 길이가 $10\,\mathrm{cm}$ 일 때, 이 직사각형의 가로의 길이를 구하여라.



 $\bigcirc 4\sqrt{5}\,\mathrm{cm}$ $4 8\sqrt{5} \text{ cm}$

 $2\sqrt{5}$ cm

 $3 5\sqrt{2} \,\mathrm{cm}$

 $\Im \sqrt{5} \,\mathrm{cm}$

세로의 길이를 $x \, \mathrm{cm}$ 라고 하면

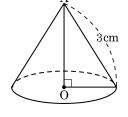
해설

 $\sqrt{x^2 + (2x)^2} = 10$ $5x^2 = 100$

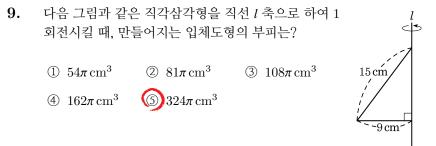
 $x = 2\sqrt{5} \,\mathrm{cm}$

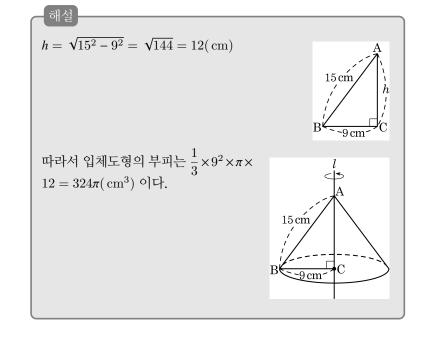
따라서 가로의 길이는 $2x = 4\sqrt{5}$ cm이다.

- 다음 그림과 같이 밑면의 둘레가 4π cm 이고 8. 모선의 길이가 3 cm 인 원뿔의 높이는?
 - $\sqrt{5}$ cm $3 5\sqrt{5} \text{ cm}$
- \bigcirc 5 cm
- 4 $10\,\mathrm{cm}$

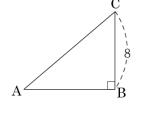


밑면의 둘레가 $2\pi r=4\pi ({
m cm})$ 이므로 밑면의 반지름은 $2{
m cm}$ 따라서 원뿔의 높이 $h=\sqrt{3^2-2^2}=\sqrt{5}({
m cm})$ 이다.





10. 다음 그림과 같은 직각삼각형 ABC 에서 $\cos A = \frac{3}{5}$ 이고, \overline{BC} 가 8 일 때, $\triangle ABC$ 의 넓이는?



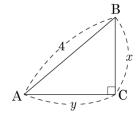
- ① 12
- ②24 ③ 36 ④ 48
- ⑤ 50

 $\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{3}{5}$ 이므로 $\sin A = \frac{4}{5}$ 이다. $\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5}$ 이므로 $\overline{AC} = \frac{\overline{BC}}{\sin A}$ 이다.

또한, $\overline{AC} = \frac{8}{\frac{4}{5}} = 10$ 이다.

피타고라스 정리에 의해 $\overline{\mathrm{AB}} = \sqrt{10^2 - 8^2} = 6$ 이므로 따라서 $\triangle ABC$ 의 넓이는 $6 \times 8 \times \frac{1}{2} = 24$ 이다.

11. $\sin A = \frac{\sqrt{2}}{2}$ 인 직각삼각형 ABC 에서 x+y의 값은? (단, 0° < A < 90°)



- ① $\sqrt{2} + 2$ ② $2\sqrt{2} 2$ ③ $4\sqrt{2}$ ④ $4\sqrt{2} 2$ ⑤ $5\sqrt{2} 2$

sin A =
$$\frac{x}{4} = \frac{\sqrt{2}}{2}$$
 \Rightarrow $x = 2\sqrt{2}$
 $y = \sqrt{4^2 - (2\sqrt{2})^2} = 2\sqrt{2}$
따라서 $x = 2\sqrt{2}$, $y = 2\sqrt{2}$ 이다.

따라서
$$x=2\sqrt{2}, y=2\sqrt{2}$$

12. 다음 자료의 변량에서 중앙값은?

① 50 60 55 70 65 ① 50 ② 55 ③ 60 ④ 65 ⑤ 70

ा ।

주어진 자료를 크기순으로 나열하면 50,55,60,65,70이므로 중

앙값은 60이다.

- 13. 다음은 희정이네 학급 43 명의 일주일 동안 의 운동시간을 조사하여 나타낸 그래프이 다. 학생들의 운동시간의 중앙값과 최빈값 은?
 - (명)[10 ① 중앙값: 3, 최빈값: 3
 - ② 중앙값: 3, 최빈값: 4
 - ③ 중앙값: 4, 최빈값: 3
 - ④ 중앙값 : 4, 최빈값 : 4
 - ⑤ 중앙값: 5, 최빈값: 5

최빈값은 학생 수가 11 명으로 가장 많을 때인 4 이고, 운동시간

을 순서대로 나열하면 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6 이므로 중앙값은 4

이다.

14. 6개의 변량 $x_1, x_2, x_3, \cdots, x_6$ 의 평균이 3이고 표준편차가 4일 때, $2x_1 - 1, 2x_2 - 1, 2x_3 - 1, \cdots, 2x_6 - 1$ 의 평균과 표준편차는?

② 평균: 3, 표준편차: 15

③ 평균: 3, 표준편차: 20 ④ 평균 : 5, 표준편차 : 8 ⑤ 평균 : 5, 표준편차 : 15

① 평균: 3, 표준편차: 8

n개의 변량 $x_1, x_2, x_3, \cdots, x_n$ 의 평균이 m이고 표준편차가 s일

때, 변량 $ax_1+b,ax_2+b,ax_3+b,\cdots,ax_n+b$ 에 대하여 평균은 am + b, 표준편차는 |a|s이므로 평균은 $2 \cdot 3 - 1 = 5$ 이고 표준편차는 |2| · 4 = 8이다.

- **15.** 다음 네 개의 변수 a, b, c, d 에 대하여 다음 보기 중 옳지 <u>않은</u> 것을 모두 고르면?
 - ① a+1, b+1, c+1, d+1의 평균은 a, b, c, d의 평균보다 1만큼 크다.
 ② a+3, b+3, c+3, d+3의 평균은 a, b, c, d의 평균보다 3
 - 배만큼 크다.
 ③ 2a + 3, 2b + 3, 2c + 3, 2d + 3의 표준편차는 a, b, c, d의
 - 표준편차보다 2배만큼 크다. ④ 4a+7, 4b+7, 4c+7, 4d+7의 표준편차는 a, b, c, d의
 - 표준편차의 4배이다.

 ③ 3a, 3b, 3c, 3d의 표준편차는 a, b, c, d의 표준편차의 9
 - 배이다.

② a+3, b+3, c+3, d+3 의 평균은 a, b, c, d 의 평균보다

해설

3 배만큼 크다. → a+3, b+3, c+3, d+3 의 평균은 a, b, c, d 의 평균보다 3 만큼 크다.

⑤ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 9 배이다.

→ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 3

→ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 3 배이다.

16. 다음은 학생 8 명의 기말고사 수학 성적을 조사하여 만든 것이다. 학생들 8 명의 수학 성적의 분산은?

계급	계급값	도수	(계급값)×(도수)
55 ^{이상} ~ 65 ^{미만}	60	3	180
65 ^{이상} ~ 75 ^{미만}	70	3	210
75 ^{이상} ~ 85 ^{미만}	80	1	80
85 ^{이상} ~ 95 ^{미만}	90	1	90
계	계	8	560

① 60 ② 70 ③ 80 ④ 90

⑤100

학생들의 수학 성적의 평균은 $(평균) = \frac{\{(계급값) \times (도수)\} \text{ 의 총합}}{(도수)\text{의 총합}}$ $= \frac{560}{8} = 70(점)$ 따라서 구하는 분산은 $\frac{1}{8} \{(60-70)^2 \times 3 + (70-70)^2 \times 3 + (80-70)^2 \times 1 + (90-70)^2 \times 1\}$ $= \frac{1}{8}(300+0+100+400) = 100$ 이다.

17. 다음은 학생 8 명의 기말고사 국어 성적을 조사하여 만든 것이다. 학생들 8 명의 국어 성적의 분산은?

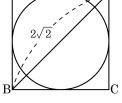
계급	도수
55 ^{이상} ~ 65 ^{미만}	3
65 ^{이상} ~ 75 ^{미만}	3
75 ^{이상} ~ 85 ^{미만}	1
85 ^{이상} ~ 95 ^{미만}	1
합계	8

⑤100

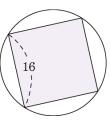
① 60 ② 70 ③ 80 ④ 90

학생들의 국어 성적의 평균은 $(평균) = \frac{\left\{ (계급값) \times (도수) \right\} 의 총합}{(도수)의 총합}$ $= \frac{560}{8} = 70(점)$ 따라서 구하는 분산은 $\frac{1}{8} \left\{ (60-70)^2 \times 3 + (70-70)^2 \times 3 + (80-70)^2 \times 1 + (90-70)^2 \times 1 \right\}$ $= \frac{1}{8} (300+0+100+400) = 100$ 이다.

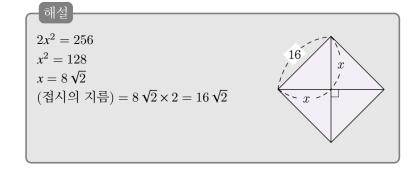
- 18. 다음 그림과 같이 대각선의 길이가 $2\sqrt{2}$ 인 A_{Γ} 정사각형에 내접하는 원의 넓이는? ① 8π $\bigcirc 6\pi$ $\bigcirc 4\pi$
 - \bigcirc π $\bigcirc 2\pi$



 $\overline{\mathrm{BD}}:\overline{\mathrm{BC}}=\sqrt{2}:1$ 이므로 $\overline{\mathrm{BC}}=2$ 즉 원의 지름이 2 이므로 반지름은 1 따라서 구하는 원의 넓이는 $\pi \times 1^2 = \pi$ 이다. 19. 동그란 접시위에 다음과 같이 접시에 내접하도 록 정사각형 모양의 식빵을 잘라 놓으려고 한다. 식빵의 한 변의 길이를 16으로 잘라야 할때, 접시의 지름이 최소한 몇이어야 하는가?



① $15\sqrt{2}$ ② $15\sqrt{3}$ ③ $16\sqrt{2}$ ④ $16\sqrt{3}$ ⑤ $17\sqrt{2}$



20. 다음 좌표평면 위의 두 점 A(3,6), B(10,12) 사이의 거리를 구하는 과정이다. ☑ 안에 알맞은 수를 구하여라.

(두 점 A, B 사이의 거리)= AB
$$\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$$

$$= (10-3)^2 + (12-6)^2$$

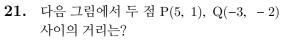
$$= 49 + 36$$

$$= 85$$
∴ AB = □

① $3\sqrt{5}$ ② 6 ③ $6\sqrt{7}$ ④ 8

 $\sqrt{85}$

(두 점 A, B 사이의 거리)= \overline{AB} $\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$ $= (10-3)^2 + (12-6)^2$ = 49 + 36 = 85

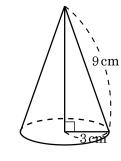


P(5,1) O V Q (-3,-2)

① $\sqrt{5}$ ② 5 ③ $\sqrt{73}$ ④ $\sqrt{65}$ ⑤ 11

 $\overline{PQ} = \sqrt{\{5 - (-3)\}^2 + \{1 - (-2)\}^2}$ $= \sqrt{8^2 + 3^2} = \sqrt{73}$

22. 다음 그림에서 호 AB 의 길이는 $6\pi {\rm cm}$, $\overline{\rm OA} = 9 {\rm cm}$ 이다. 이 전개도로 원뿔을 만들 때, 원뿔의 높이는?



 $46\sqrt{2}$ cm

① $3\sqrt{2}$ cm

- ② $4\sqrt{2}$ cm ⑤ $7\sqrt{2}$ cm

 $3 5\sqrt{2} \text{cm}$

호 AB 의 길이, 밑면의 둘레의 길이가 $2\pi r = 6\pi$ 이므로 밑면의 반지름의 길이 r = 3(cm) 이다.

해설

위의 전개도로 다음과 같은 원뿔이 만들어진다.

자라서 원뿔의 높이 $h=\sqrt{9^2-3^2}=\sqrt{81-9}=\sqrt{72}=6\sqrt{2}$ (cm) 이다.

23. 다음 그림과 같이 높이가 8cm , 모선의 길이가 10cm 인 원뿔이 있다. 겉넓이와 부피를 각각 구하면?

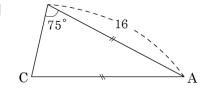
② 겉넓이: 94πcm², 부피: 96πcm³
③ 겉넓이: 96πcm², 부피: 94πcm³
④ 겉넓이: 96πcm², 부피: 96πcm³
⑤ 겉넓이: 96πcm², 부피: 98πcm³

① 겉넓이 : $94\pi\mathrm{cm}^2$, 부피 : $94\pi\mathrm{cm}^3$

e en | · Johan , | | · Johan

밑면의 반지름은 6cm 이므로 $(겉넓이) = \frac{1}{2} \times 12\pi \times 10 + 36\pi$ $= 60\pi + 36\pi = 96\pi(\text{cm}^2)$ $(부피) = \frac{1}{3} \times 36\pi \times 8$ $= 96\pi(\text{cm}^3)$

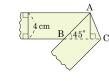
- 24. 다음 그림은 이등변삼각형이다.∠C = 75°일 때, ΔABC 의 넓이로 알맞은 것은?
 - ① 60 ② 60.5
 - 3 62
- **4** 62.5



해설

 $\triangle ABC = \frac{1}{2} \times 16 \times 16 \times \sin(180^{\circ} - 75^{\circ} \times 2)$ $= \frac{1}{2} \times 16 \times 16 \times \frac{1}{2} = 64$

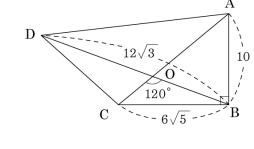
25. 다음 그림과 같이 폭이 4cm 인 종이 테이프를 선분 AC 에서 접었다. ∠ABC = 45° 일 때, △ABC 의 넓이는?



- $4 14 \sqrt{2} \text{ cm}^2$ $5 16 \sqrt{2} \text{ cm}^2$
- ① $7\sqrt{2} \text{ cm}^2$ ② $8\sqrt{2} \text{ cm}^2$ ③ $9\sqrt{2} \text{ cm}^2$

∠DAC = ∠BAC (∵ 접은 각), ∠DAC = ∠BCA (∵ 엇각)이므로 $\angle \mathrm{BAC} = \angle \mathrm{BCA}$ ΔABC 는 이등변삼각형이고, $\overline{AH} = 4 \mathrm{cm}$ 이므로 $\overline{AB} = \overline{BC} = \frac{4}{\sin 45^{\circ}} = 4\sqrt{2} \text{ (cm)}$ (넓이)= $\frac{1}{2} \times (4\sqrt{2})^2 \times \sin 45^\circ = 8\sqrt{2} (\text{cm}^2)$

26. 다음 사각형 ABCD 에서 $\overline{AB}=10$, $\overline{BC}=6\sqrt{5}$, $\overline{BD}=12\sqrt{3}$ 일 때, □ABCD 의 넓이는?



- ① $16\sqrt{70}$ ④ $21\sqrt{70}$
- ② $18\sqrt{70}$ ⑤ $24\sqrt{70}$
- $3 20\sqrt{70}$

 $\overline{AC} = \sqrt{10^2 + (6\sqrt{5})^2} = \sqrt{100 + 180} = 2\sqrt{70}$ $\Box ABCD \supseteq \exists \exists \circ]$ $= \frac{1}{2} \times 12\sqrt{3} \times 2\sqrt{70} \times \sin(180^\circ - 120^\circ)$ $= \frac{1}{2} \times 12\sqrt{3} \times 2\sqrt{70} \times \sin 60^\circ$ $= \frac{1}{2} \times 12\sqrt{3} \times 2\sqrt{70} \times \frac{\sqrt{3}}{2} = 18\sqrt{70}$

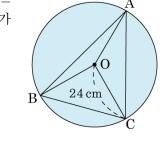
27. 다음 그림의 $\triangle ABC$ 에서 $\angle A: \angle B: \angle C=$ 3:4:5 이고 원 O 의 반지름의 길이가

24cm 일 때, △ABC 의 넓이는?

① $264\left(2+\sqrt{3}\right)$

(2) $144(3+\sqrt{3})$

- $3 149 \left(2 + \sqrt{2}\right)$
- $4 288 \left(2 + \sqrt{3}\right)$
- \bigcirc 288 $(3+\sqrt{3})$



$\angle A: \angle B: \angle C=3:4:5$ 이므로

 $\angle BOC = 90^{\circ}$, $\angle AOC = 120^{\circ}$, $\angle AOB = 150^{\circ}$ (△ABC의 넓이)

 $= \triangle AOB + \triangle BOC + \triangle AOC$ $= \frac{1}{2} \times 24^{2} \times \sin(180^{\circ} - 150^{\circ}) + \frac{1}{2} \times 24^{2} \times \sin 90^{\circ}$

 $+\frac{1}{2} \times 24^2 \times \sin(180^\circ - 120^\circ)$

 $= \frac{1}{2} \times 24^{2} \times (\sin 30^{\circ} + \sin 90^{\circ} + \sin 60^{\circ})$

 $= \frac{1}{2} \times 24^2 \times \left(\frac{1}{2} + 1 + \frac{\sqrt{3}}{2}\right)$

 $= 144 \left(3 + \sqrt{3}\right) \left(\text{cm}^2\right)$

 ${f 28}$. 다음 그림과 같이 ${f \overline{AB}}$ = $13\,{
m cm}$, ${f \overline{AD}}$ = $10\,\mathrm{cm}$, $\overline{\mathrm{BC}}=2\overline{\mathrm{AD}}$ 인 등변사다리꼴의 넓 이를 구하면?

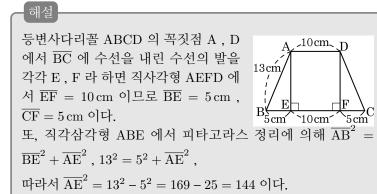
A_10cm_D 13cm

 $\textcircled{1} \ 120\,\mathrm{cm}^2$ $3180\,\mathrm{cm}^2$

 $300 \, \text{cm}^2$

 $\textcircled{4} \quad 195\,\mathrm{cm}^2$

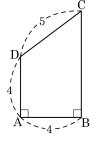
 $\bigcirc 130\,\mathrm{cm}^2$



그런데 $\overline{AE} > 0$ 이므로 $\overline{AE} = 12 \, \mathrm{cm}$ 이다. 이제 등변사다리꼴의 넓이를 구하면

 $\frac{1}{2} \times (\overline{AD} + \overline{BC}) \times \overline{AE} = \frac{1}{2} \times (10 + 20) \times 12 = 180 (\text{ cm}^2) \text{ 이다.}$

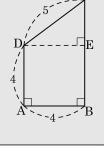
29. 다음 그림에서 \overline{BC} 의 길이는?



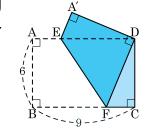
①7 2 8 3 9 4 10 5 11

점 D를 지나면서 \overline{AB} 에 평행한 보조선을 긋

고 $\overline{\mathrm{BC}}$ 와의 교점을 E 라고 하자. $\Delta \mathrm{DEC}$ 에 피타고라스 정리를 적용하면 $\overline{\mathrm{EC}}$ = 따라서 $\overline{BC} = 4 + 3 = 7$ 이다.



30. 다음 그림과 같이 직사각형 ABCD 의 꼭짓점 B 가 점 D 에 오도록 접었다. $\overline{\mathrm{AB}}=6,\;\overline{\mathrm{BC}}=9$ 일 때, $\Delta\mathrm{DEF}$ 의 넓이는?



① 18 **4**19.5 ② 18.5 ⑤ 20

3 19

해설

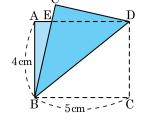
△A′ED 에서 $6^2 + (9 - x)^2 = x^2$

 $\overline{\text{DE}}$ 를 x 라고 하면,

18x = 36 + 81 $x = \frac{117}{18} = \frac{13}{2}$

따라서 \triangle EDF 의 넓이는 $\frac{1}{2} \times \frac{13}{2} \times 6 = \frac{39}{2} = 19.5$ 이다.

31. 다음 그림과 같이 직사각형 ABCD 에서 대 각선 BD 를 접는 선으로 하여 접어서 점 C 가 옮겨진 점을 C' , 변 BC' 와 변 AD 의 교점을 E 라고 할 때, 옳은 것은 ?



③ △BDE 는 정삼각형

① $\angle ABE + \angle EBD = \angle CBD$

- $4 \triangle ABE + \angle DEC' = 90^{\circ}$

 $\triangle ABE \equiv \triangle C'DE$ 이므로 $\angle ABE = \angle C'DE$ 가 성립한다. 따라서 $\angle ABE + \angle DEC' = 90^{\circ}$

- 32. 다음 도형은 한 변의 길이가 2 인 정육각형이 다. 정육각형의 넓이는?

- ① $3\sqrt{3}$ ② $4\sqrt{3}$ ③ $5\sqrt{3}$ ④ $6\sqrt{3}$ ⑤ $7\sqrt{3}$

한변의 길이가 2 인 정육각형의 넓이는 한변의

길이가 2 인 (정삼각형의 넓이)×6 이다. $\therefore \frac{\sqrt{3}}{4} \times 2^2 \times 6 = 6\sqrt{3}$

 ${f 33.}$ 한 변의 길이가 $10\,{
m cm}$ 인 정육각형의 넓이는 $a\,\sqrt{b}\,{
m cm}^2$ 이다. ${a\over b}$ 를 구하시오. (단, *b*는 최소자연수이다.)

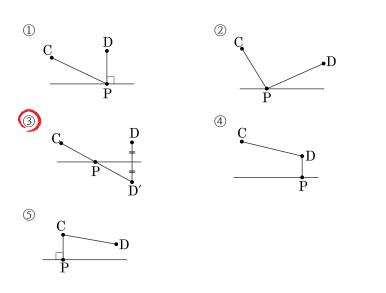
① 10 ② 20 ③ 30 ④ 40

- **(3)** 50

정육각형은 6 개의 정삼각형으로 이루어져 있으므로 $\frac{\sqrt{3}}{4} \times 10^2 \times$ $6=150\sqrt{3}$ (cm²)이다. $\therefore \frac{a}{b}=\frac{150}{3}=50$

$$\therefore \ \overline{b} = \overline{3} = 5$$

 $_{\triangleleft}\mathrm{D}$



AB 에 대한 점 D의 대칭점 D'을 잡고 선분 CD'가 AB와 만나는 점을 P로 잡는다. **35.** 좌표평면 위에서 점 A(2, 3) 과 원점에 대하여 대칭인 점을 점 B 라고할 때, \overline{AB} 의 길이를 구하면?

① $\sqrt{13}$ ② $2\sqrt{13}$ ③ $3\sqrt{13}$ ④ $4\sqrt{13}$ ⑤ $5\sqrt{13}$

A(2,3), B(-2,-3) $\therefore \sqrt{4^2 + 6^2} = 2\sqrt{13}$

해설