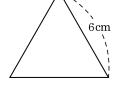
1. 높이가 $3\sqrt{3}$ 인 정삼각형의 넓이가 $a\sqrt{b}$ 일 때, a+b를 구하여라. (단, b는 최소의 자연수)

① 10 ② 11 ③ 12 ④ 13 ⑤ 14

정삼각형의 한 변의 길이를 x라고 하면

$$\begin{bmatrix} 2 \\ \varsigma - \sqrt{3} \\ \varsigma - 0 \end{bmatrix}$$


$$\frac{\sqrt{3}}{2}x = 3\sqrt{3}, x = 6$$

$$S = \frac{\sqrt{3}}{4} \times 6^2 = 9\sqrt{3}$$

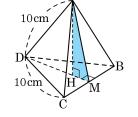
$$\therefore 9 + 3 = 12$$

- 한 변의 길이가 $6 \, \mathrm{cm}$ 인 정삼각형의 넓이를 구하면? 2.

 - ① $9\sqrt{3} \text{ cm}^2$ ② $18\sqrt{3} \text{ cm}^2$ ③ $36\sqrt{3} \text{ cm}^2$ ④ $\frac{\sqrt{3}}{2} \text{ cm}^2$ ⑤ $\frac{\sqrt{3}}{6} \text{ cm}^2$

정삼각형의 넓이는 $\frac{\sqrt{3}}{4} \times 6^2 = 9\sqrt{3} \text{ (cm}^2)$

- 3. 다음 그림과 같은 정삼각형 ABC 안에서 한 변의 길이가 2인 정삼각형을 오려냈을 때, 어 두운 부분과 넓이가 같은 정삼각형의 한 변의 길이는?
 - $34\sqrt{2}$
- ① $2\sqrt{2}$ ② $3\sqrt{2}$
- $4 \ 5\sqrt{2}$ $5 \ 6\sqrt{2}$


한 변이 a 인 정삼각형의 넓이는 $S = \frac{\sqrt{3}}{4}a^2$ 구하는 길이를 *x* 라 하면,

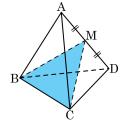
$$\frac{\sqrt{3}}{4}x^2 = \frac{\sqrt{3}}{4} \times 6^2 - \frac{\sqrt{3}}{4} \times 2^2$$

$$x^2 = 32$$

$$x^2 = 32$$

 $x > 0$ 이므로 $x = 4\sqrt{2}$ 이다.

- 다음 그림과 같은 정사면체의 점 A 에서 밑면 **4.** 에 내린 수선의 발을 H 라 할 때, 색칠한 부분 의 넓이는?
 - ① $\frac{25}{3} \text{ cm}^2$ ② $\frac{25\sqrt{2}}{3} \text{ cm}^2$ ③ $\frac{25\sqrt{3}}{3} \text{ cm}^2$ ④ $\frac{50}{3} \text{ cm}^2$ ⑤ $\frac{50\sqrt{3}}{3} \text{ cm}^2$


$$\overline{\text{MD}} = \frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times 10 = 5\sqrt{3} \text{ (cm)}$$

$$\overline{\text{AH}} = \frac{\sqrt{6}}{3}a = \frac{\sqrt{6}}{3} \times 10 = \frac{10\sqrt{6}}{3} \text{ (cm)}$$

$$\overline{\text{MH}} = 5\sqrt{3} \times \frac{1}{3} = \frac{5\sqrt{3}}{3} \text{ (cm)}$$

$$\therefore \triangle AMH = \frac{5\sqrt{3}}{3} \times \frac{10\sqrt{6}}{3} \times \frac{1}{2} = \frac{25\sqrt{2}}{3} (cm^2)$$

다음 그림과 같이 한 모서리의 길이가 6cm인 **5.** 정사면체에서 $\overline{\mathrm{AD}}$ 의 중점을 M 이라 할 때, △BCM 의 넓이는?

- ① $6\sqrt{2}\text{cm}^2$ ② $7\sqrt{2}\text{cm}^2$ ③ $8\sqrt{2}\text{cm}^2$ ④ $9\sqrt{2}\text{cm}^2$ ⑤ $10\sqrt{2}\text{cm}^2$

 $\overline{\mathrm{BM}}=\overline{\mathrm{CM}}$ 은 정삼각형의 높이이므로 $\overline{\rm BM} = \overline{\rm CM} = \frac{\sqrt{3}}{2} \times 6 = 3\,\sqrt{3}({\rm cm})$

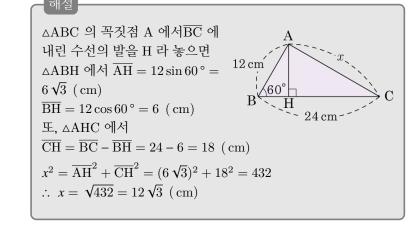
$$BM = CM = \frac{1}{2} \times 6 = 3 \sqrt{3} \text{ (cm)}$$
 \overline{BC} 의 중점을 P라 하면,

 $\overline{MP} = \sqrt{(3\sqrt{3})^2 - 3^2} = 3\sqrt{2}(cm)$

$$\therefore \triangle BCM = \frac{1}{2} \times 6 \times 3\sqrt{2} = 9\sqrt{2}(cm^2)$$

- 6. 부피가 $144\sqrt{2}\,\mathrm{cm}^3$ 인 정사면체의 한 모서리의 길이를 구하여라.
 - ① 10 cm ② 11 cm ③ 12 cm ④ 13 cm ⑤ 14 cm

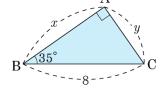
한 모서리의 길이를 $a \, \mathrm{cm}$ 라고 하면


 $\frac{\sqrt{2}}{12}a^3 = 144\sqrt{2}$ $a^3 = 12 \times 144 = 2^6 3^3 = (2^2 \times 3)^3$ $\therefore a = 12 \text{ cm}$

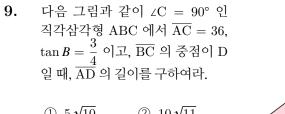
7. 다음 그림의 △ABC 에서 ĀB = 12 cm, BC = 24 cm, ∠B = 60°일 때, ĀC 의 길이는?

① 10√6 cm ② 11√4 cm

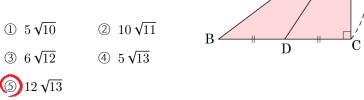
② 12√2 cm → ④ 12√5 cm


③ $12\sqrt{3}$ cm ④ $13\sqrt{5}$ cm

8. 다음 그림에서 x - y 의 값을 구하면? (단, $\sin 55^\circ = 0.82$, $\cos 55^\circ = 0.57$)


> 1)2 **4** 8

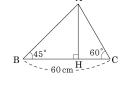
- ② 4 ⑤ 10
- 3 6


$$\sin 55^\circ = \frac{x}{8} = 0.82$$
 이므로 $x = 6.56$
 $\cos 55^\circ = \frac{y}{8} = 0.57$ 이므로 $y = 4.56$
따라서, $x - y = 6.56 - 4.56 = 2$ 이다.

$$\cos 55^\circ = \frac{y}{8} = 0.57$$
 이므로 $y = 4.5$

① $5\sqrt{10}$ ② $10\sqrt{11}$

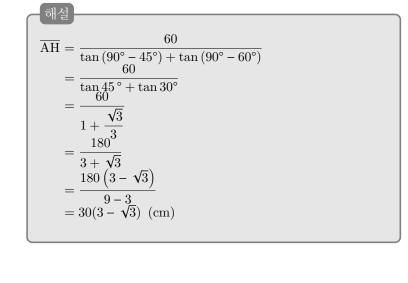
 $\bigcirc 12\sqrt{13}$



△ABC 에서

 $\tan B = \frac{36}{\overline{BC}} = \frac{3}{4} \qquad \therefore \overline{BC} = 48$ $\therefore \overline{CD} = \frac{1}{2}\overline{BC} = 24$

파라서 △ADC 에서 AD = √36² + 24² = √1872 = 12√13 이다.

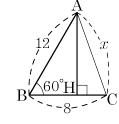

10. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle B=45^\circ$, $\angle C=60^\circ$, $\overline{BC}=60\mathrm{cm}$ 일 때, \overline{AH} 의 길이를 구하면?

- ① $30(2 \sqrt{2})$ cm ③ $30(2 - \sqrt{3})$ cm
- $40 (3 \sqrt{3}) \text{ cm}$

② $30(4-\sqrt{2})$ cm

- ⑤ $30(4-\sqrt{3})$ cm
- (5) 50 (5 **v**5) ch

11. 다음 그림에서 \overline{AB} 의 길이는?


- ① 12 **4** 15
- ② 13 **⑤**16
- 3 14

$\overline{\mathrm{AH}} = 8\sin 30^{\circ} = 4$

 $\overline{\rm CH} = 8\cos 30\,^\circ = 4\,\sqrt{3}$

 $\overline{BH} = 4\sqrt{3} \tan 60^{\circ} = 4\sqrt{3} \times \sqrt{3} = 12$ $\therefore \overline{AB} = \overline{AH} + \overline{BH} = 4 + 12 = 16$

12. 다음 그림에서 x 의 길이를 구하면?

 $4\sqrt{7}$

⑤ $4\sqrt{11}$

$$\overline{AH} = 12 \sin 60^{\circ} = 12 \times \frac{\sqrt{3}}{2} = 6 \sqrt{3}$$
 $\overline{BH} = 12 \cos 60^{\circ} = 12 \times \frac{1}{2} = 6$

해설

① $4\sqrt{2}$ ② $4\sqrt{3}$ ③ $4\sqrt{5}$

$$\overline{\text{CH}} = 8 - 6 = 2$$

$$x = \sqrt{(6\sqrt{3})^2 + 2^2} = \sqrt{108 + 4} = \sqrt{112} = 4\sqrt{7}$$