$4.1 < \sqrt{x} < 5.6$ 를 만족하는 자연수 x 의 값 중에서 가장 큰 수를 a, 가장 작은 수를 b 라고 할 때, a+b 의 값으로 알맞은 것은?

$$4.1 = \sqrt{16.81}$$
, $5.6 = \sqrt{31.36}$ 이므로 $16.81 < x < 31.36$

a = 31, b = 17

 $\therefore a+b=17+31=48$

•
$$\sqrt{8} - \frac{1}{\sqrt{18}} + \frac{1}{\sqrt{32}} = k\sqrt{2}$$
 일 때, k 의 값은?

②
$$\frac{23}{12}$$

$$3\frac{47}{24}$$

$$2\sqrt{2} - \frac{1}{3\sqrt{2}} + \frac{1}{4\sqrt{2}} = 2\sqrt{2} - \frac{\sqrt{2}}{6} + \frac{\sqrt{2}}{8}$$

 $=\frac{47\sqrt{2}}{24}$

 $= \frac{48\sqrt{2} - 4\sqrt{2} + 3\sqrt{2}}{24}$

3. x 에 관한 이차방정식 $x^2 - 4x + a = 0$ 의 한 근이 3 일 때, a 의 값과 다른 한 근의 차를 구하면?

$$3^2 - 4 \times 3 + a = 0$$
 $\therefore a = 3$
 $x^2 - 4x + 3 = 0$
 $(x - 3)(x - 1) = 0$
따라서 다른 한 근은 1이다.
 $\therefore 3 - 1 = 2$

4. 이차방정식 $x^2 - x - 6 = 0$ 의 두 근 중 작은 근이 이차방정식 $2x^2 + bx - 2 = 0$ 의 근이라고 할 때, b 의 값은?

①
$$-3$$
 ② -1 ③ 1 ④ 2 ⑤ 3

다음 이차방정식의 두 근의 합은?

$$2x^2 - 5x - 3 = 0$$

①
$$\frac{3}{2}$$

$$\bigcirc \frac{5}{2}$$

$$ax^2 + bx + c = 0$$
($a \neq 0$) 의 두 근을 α , β 라 할 때, $\alpha + \beta =$

$$-\frac{b}{a}$$
, $\alpha\beta = \frac{c}{a}$

이를 이용하면 (두 근의 합)=
$$-\frac{(-5)}{2}=\frac{5}{2}$$
 이다.

6. $A = (-\sqrt{9})^2 - (-\sqrt{5})^2 - \sqrt{(-2)^2}, B = \sqrt{8^2} \div (-\sqrt{2})^2 + \sqrt{(-5)^2} \times (-\sqrt{9})^2 + \sqrt{(-5)^$

해설
$$A = 9 - 5 - 2 = 2$$

$$B = (8 \div 2) + \left(5 \times \frac{1}{5}\right) = 4 + 1 = 5$$

$$AB = 2 \times 5 = 10$$

 $AB = 2 \times 5 = 10$

. 다음 수직선에서 $3\sqrt{2} - 5$ 에 대응하는 점은?

① A ②B ③ C ④ D ⑤ E

$$\sqrt{16} < 3\sqrt{2} < \sqrt{25}$$
 에서 $4 < 3\sqrt{2} < 5$ 이므로 $-1 < 3\sqrt{2} - 5 < 0$ 이다. $3\sqrt{2} - 5$ 에 대응하는 점은 점 B 이다.

3. 두 다항식 $2x^2 + 3xy - 2y^2$, $4x^2 + 5xy + ay^2$ 의 공통인 인수가 x + by 일 때, 상수 a, b 에 대하여 a - b 의 값을 구하면?

$$2x^2 + 3xy - 2y^2 = (2x - y)(x + 2y)$$

공통인 인수가 $x + by$ 이므로 $b = 2$
 $4x^2 + 5xy + ay^2 = (x + 2y)(4x + cy)$ 에서
 $8 + c = 5, c = -3$
 $a = 2c = -6$

 $\therefore a-b=-8$

9. (x-y)(x-y+6)+9 를 인수분해한 것으로 올바른 것은?

①
$$(x+y+3)^2$$
 ② $(x-y+3)^2$ ③ $(x+y-3)^2$
④ $(x-y-3)^2$ ⑤ $(x+y+4)^2$

해설
$$x-y = A 로 치환하면(x-y)(x-y+6) + 9 = A(A+6) + 9= A^2 + 6A + 9= (A+3)^2= (x-y+3)^2$$

10. 다음 식을 인수분해하면?

$$(x-2)(x-1)(x+1)(x+2)-40$$

- ① $(x+3)^2(x^2+4)$
- ② $(x-3)^2(x^2+4)$
- $(x+3)(x-3)(x^2+4)$
 - (4) (x+3)(x-3)(x+2)(x-2)
 - $(x+2)(x-2)(x^2+3)$

$$(x^{2}-4)(x^{2}-1) - 40 = x^{4} - 5x^{2} - 36$$
$$= (x^{2}-9)(x^{2}+4)$$
$$= (x+3)(x-3)(x^{2}+4)$$

11. $-9x^2 + y^2 + 6xz - z^2$ 을 인수분해하였더니 (ay - 3x + z)(y + bx + cz)가 되었다. 이때, 상수 a, b, c 에 대하여 a + b + c 의 값을 구하면?

→
$$y^2 + y^2 + 6xz - z^2$$

$$= y^2 - (9x^2 - 6xz + z^2)$$

$$= y^2 - (3x - z)^2$$

$$= \{y - (3x - z)\} \{y + (3x - z)\}$$

$$= (y - 3x + z)(y + 3x - z)$$

$$a = 1, b = 3, c = -1$$

∴ $a + b + c = 3$

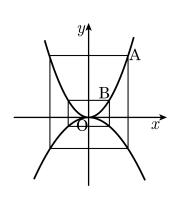
12. 이차함수
$$y = ax^2 + bx + c$$
 는 직선 $x = 2$ 에 대하여 대칭이고, 직선 $y = x - 1$ 과 만나는 점의 x 좌표가 3 , -2 일 때, $a + b + c$ 의 값을 구하면?

① 0 ②
$$\frac{1}{3}$$
 ③ $\frac{2}{3}$ ④ 1 ⑤ 2

x = 2 에 대하여 대칭이므로 $y = a(x - 2)^2 + a$ 이고.

 $y = -\frac{1}{3}(x-2)^2 + \frac{7}{3} = -\frac{1}{3}x^2 + \frac{4}{3}x + 1$

따라서 y = a + b + c = 2이다.


$$y = x - 1$$
에서 $(3, 2), (-2, -3)$ 을 지나므로, $a + q = 2, 16a + q = -3$ 에서 $a = -\frac{1}{3}, q = \frac{7}{3}$ 이므로

13. 이차함수
$$y = x^2 - 4kx + 2k^2 + k - 1$$
 의 최솟값을 m 이라 할 때, m 의 최댓값은?

①
$$-\frac{7}{8}$$
 ② -1 ③ $\frac{1}{8}$ ④ 1 ⑤ $-\frac{9}{8}$

해설
$$y = x^2 - 4kx + 2k^2 + k - 1 = (x - 2k)^2 - 2k^2 + k - 1$$

$$m = -2k^2 + k - 1 = -2\left(k - \frac{1}{4}\right)^2 - \frac{7}{8}$$
 이므로 m 의 최댓값은 $-\frac{7}{8}$ 이다.

14. 다음 그림과 같이 두 함수 $y = x^2$, $y = -\frac{1}{2}x^2$ 에 대하여 두 직사각형이 서로 다른 닮음이다. A의 x좌표를 a, B의 x좌표를 b라 할때, ab의 값을 구하면?

①
$$\frac{4}{9}$$
 ② $\frac{16}{9}$ ③ $\frac{3}{2}$ ④ $\frac{5}{3}$ ⑤ $\frac{1}{4}$

서로 같지 않는 닮음 이므로 큰 사각형의 가로와 작은 사각형의 세로가 대응변이다.

세로가 대응변이다. 그러므로 $2a: \frac{3}{2}a^2 = \frac{3}{2}b^2: 2b$ 에서

 $\frac{9}{4}a^2b^2 = 4ab$

$$\therefore ab = \frac{16}{9}$$

15. 이차함수 $y = ax^2 + bx + c$ 의 그래프가 다음과 같을 때, 다음 중 옳은 것을 모두 고르면?

(3) b > 0

④
$$c < 0$$

해설

아래로 볼록이므로
$$a > 0$$

축의 방정식 $x = -\frac{b}{2a} < 0$ 이므로 $b > 0$

v 절편이 양수이므로 c > 0한편 $f(x) = ax^2 + bx + c$ 라 하면

①
$$f(1) = a + b + c > 0$$

⑤ f(-1) = a - b + c: 판단할 수 없다.