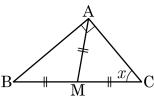
다음 그림에서 점 O 가 \triangle ABC 의 외심일 때, x + y + z 의 크기는?


① 30° ② 60° ③ 90° ④ 120° ⑤ 130°

A A

다음 그림에서 ∠APB 의 크기는?

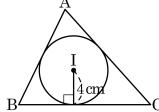
① 20° ② 40° ③ 80° ④ 90° ⑤ 140°

3. 다음 그림에서 점 M 은 ∠A = 90° 인 직각삼각형 ABC 의 빗변의 중점이다. ∠AMB : ∠AMC = 5 : 4 일 때, ∠x 의 크기를 구하여라.

(1) 30° (2) 40° (3) 50° (4) 60° (5) 70°

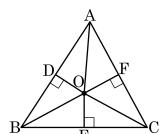
1. 세 내각의 이등분선을 긋는다. 2. 세 내각의 이등분선의 교점을 I 라고 한다. 3. 4. 그린 원을 오린다.

빈 줄에 들어갈 것으로 옳은 것은?


다음은 삼각형 모양의 종이를 오려서 최대한 큰 원을 만드는 과정이다.

- ① 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다. ② 점 I 에서 꼭짓점까지의 거리를 반지름으로 하는 원을 그린다
- ③ 세 변의 수직이등분선의 교점을 O 라고 한다.
- ④ 점 O 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.
- ⑤ 점 O 에서 꼭짓점까지의 거리를 반지름으로 하는 원을 그린다.

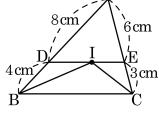
이다. 이 때, $\overline{\mathrm{AB}} + \overline{\mathrm{BC}} + \overline{\mathrm{AC}}$ 의 값을 구하면?


다음 그림에서 점 I 는 \triangle ABC 의 내심일 때, \triangle ABC 의 넓이가 40cm²

5.

① 17cm ② 18cm ③ 19cm ④ 20cm ⑤ 21cm

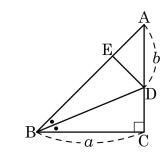
. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. 다음 중 옳지 않은 것은?


①
$$\triangle BEO \equiv \triangle CEO$$

 $\overline{AF} = \overline{CF}$

⑤ ∠FOA = ∠DOA

 $= \overline{OC} \qquad \qquad \textcircled{4} \ \angle DAO = \angle DBO$


//BC)

다음 그림에서 점 I 가 ΔABC 의 내심일 때, \overline{DE} 의 길이는? (단, \overline{DE}

① 3cm ② 4cm ③ 5cm ④ 6cm ⑤ 7cm

• $\angle C = 90^\circ$ 인 직각이등변삼각형 ABC 에서 $\angle B$ 의 이등분선이 \overline{AC} 와 만나는 점을 D, D 에서 \overline{AB} 에 내린 수선의 발을 E 라 할 때 $\overline{BC} = a$, $\overline{AD} = b$ 라 하면 \overline{AB} 의 길이를 a, b 로 나타내면?

② 2a - b

$$3 2b-a$$

 $\angle A = 90^{\circ}$, $\overline{AB} = 3$, $\overline{AC} = 4$, $\overline{BC} = 5$ 인 삼각형 ABC 의 외심을 O, 점 A 에서 변 BC 에 내린 수선의 발을 D 라 한다. $\overline{CD} = a$ 라 할 때. AOD 의 넓이를 a 를 사용하여 나타낸 것은?

① $3 + 2a$	② $3 + a$	③ $3 - \frac{a}{2}$
$\bigcirc \frac{2a}{5} - 3$	$\Im \frac{6a}{5} - 3$	2