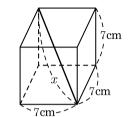

①
$$\frac{8\sqrt{3}}{3}$$
, $\frac{4\sqrt{3}}{3}$ ② $\frac{8\sqrt{3}}{3}$, $\frac{7\sqrt{3}}{3}$ ③ $\frac{10\sqrt{3}}{3}$, $\frac{4\sqrt{3}}{3}$ ④ $\frac{10\sqrt{3}}{3}$, $\frac{5\sqrt{3}}{3}$ ⑤ $\frac{11\sqrt{3}}{3}$, $\frac{5\sqrt{3}}{3}$

$$2: \sqrt{3} = x:5, \sqrt{3}x = 10$$

$$\therefore x = \frac{10}{\sqrt{3}} = \frac{10\sqrt{3}}{3}$$
$$1: \sqrt{3} = y: 5, \sqrt{3}y = 5$$

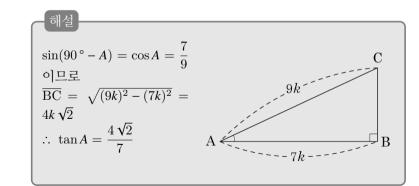

$$\therefore \ y = \frac{5}{\sqrt{3}} = \frac{5\sqrt{3}}{3}$$

다음 정육면체에서 *x* 의 길이를 구하여라.

- ① $7\sqrt{2}$ cm

(4) $7\sqrt{5}$ cm (5) $7\sqrt{6}$ cm

- ② $7\sqrt{3}$ cm ③ 18 cm



$$= \sqrt{3} \times (한 변의 길이)$$

$$= \sqrt{3} \times 7 = 7\sqrt{3} (\text{cm})$$

3. $\sin(90^{\circ} - A) = \frac{7}{9}$ 일 때, $\tan A$ 의 값을 구하여라. (단, $0^{\circ} < A < 90^{\circ}$)

①
$$\frac{2\sqrt{2}}{7}$$
 ② $\frac{4\sqrt{2}}{7}$ ③ $\frac{2\sqrt{2}}{9}$ ④ $\frac{4\sqrt{2}}{9}$ ⑤ $\frac{7\sqrt{2}}{9}$

다음은 A 반 1 분단 학생들의 기말고사 4. 수학 성적을 조사하여 나타낸 히스토그램 이다. 학생들 10 명의 수학 성적의 분산 0?

① 108 ② 121 ③ 132 (4) 144 (5) 156

해설 주어진 히스토그램을 이용하여 도수분포표로 나타내면 다음과 같다.

계급값	도수	(계급값)×(도수)	
50	2	100	
60	3	180	
70	3	210	
80	1	80	
90	1	90	
계	12	660	

학생들의 수학성적의 평균은 (평균)

$$=\frac{\left\{ (계급값) \times (도수) \right\} 의 총합}{(도수)의 총합}$$

 $66)^2 \times 1 + (90 - 66)^2 \times 1$

 $=\frac{660}{10}=66(3)$ 따라서 구하는 분산은

$$\frac{1}{10} \left\{ (50 - 66)^2 \times 2 + (60 - 66)^2 \times 3 + (70 - 66)^2 \times 3 + (80 - 66)^2 \times 3$$

 $=\frac{1}{10}(512+108+48+196+576)=144\,\text{ord}.$

$$= \frac{1}{10}(512 + 108 + 48 + 196 + 576) = 144 \,\text{or}$$

(1, 1), (2, 3)

 \bigcirc (-3,-2), (0, 0)

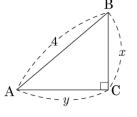
$$(3)$$
 $(-2, 0), (0, 5)$

(2, 1), (3, -5)

$$\bigcirc$$
 (-4, 4), (2, -2)

①
$$\sqrt{(2-1)^2 + (3-1)^2} = \sqrt{5}$$

② $\sqrt{(-3-0)^2 + (-2-0)^2} = \sqrt{13}$


두 점 사이의 거리가 가장 짧은 것은 어느 것인가?

③
$$\sqrt{(-2-0)^2 + (0-5)^2} = \sqrt{29}$$

④ $\sqrt{(3-2)^2 + (-5-1)^2} = \sqrt{37}$

$$\sqrt[5]{\sqrt{(-4-2)^2+(4+2)^2}} = \sqrt{72}$$

의 값은? (단, 0° < A < 90°)

 $\sin A = \frac{\sqrt{2}}{2}$ 인 직각삼각형 ABC 에서 x+y

①
$$\sqrt{2} + 2$$

④ $4\sqrt{2} - 2$

②
$$2\sqrt{2} - 2$$

③ $5\sqrt{2} - 2$

해설
$$\sin A = \frac{x}{4} = \frac{\sqrt{2}}{2} \Rightarrow x = 2\sqrt{2}$$
$$y = \sqrt{4^2 - (2\sqrt{2})^2} = 2\sqrt{2}$$
따라서 $x = 2\sqrt{2}$, $y = 2\sqrt{2}$ 이다.

다음 삼각비의 값 중에서 가장 큰 것은?

① $\sin 0^{\circ}$

 $2 \cos 30^{\circ}$

 $3 \cos 45^{\circ}$

 $(4) \sin 30^{\circ}$

 $\tan 45^{\circ}$

① $\sin 0^{\circ} = 0$

(3) $\cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $4 \sin 30^{\circ} = \frac{1}{2}$

8. 다음 그림은 직선 $x - \sqrt{3}y + 3 = 0$ 의 그래프이다. 이때, $\angle \theta$ 의 크기를 구하면?

①
$$30^{\circ}$$
 ② 40° ③ 45° ④ 50° ⑤ 60°

해설

 $y = \frac{\sqrt{3}}{3}x + \sqrt{3}$
 \therefore 기울기: $\frac{\sqrt{3}}{3}$
 $(7)울기) = \tan\theta$ 이므로 $\tan\theta = \frac{\sqrt{3}}{3}$,

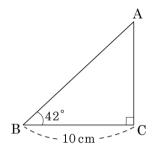
 $\therefore 2\theta = 30^{\circ}$

9. 다음 중 좌표평면 위의 원점 O 을 중심으로 하고, 반지름의 길이가 4 인 원의 외부에 있는 점의 좌표를 구하면?

① A(1, 3) ② B(-4, 0) ③ C(-2,
$$-\sqrt{5}$$
)
② D($\sqrt{13}$, 2) ⑤ E(3, $-\sqrt{7}$)

$$\overline{OA} = \sqrt{1^2 + 3^2} = \sqrt{10} < 4$$

$$\overline{OB} = \sqrt{4^2 + 0^2} = 4$$


$$\overline{OC} = \sqrt{(-2)^2 + (-\sqrt{5})^2} = 3 < 4$$

$$\overline{OD} = \sqrt{(\sqrt{13})^2 + 2^2} = \sqrt{17} > 4$$

$$\overline{OE} = \sqrt{3^2 + (-\sqrt{7})^2} = \sqrt{16} = 4$$

따라서. 점 D 는 원의 외부에 있다.

10. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하면?

〈삼각비의 표〉

x	sin x	cos x	tan x
42°	0.66	0.74	0.90
43°	0.68	0.73	0.93
44°	0.69	0.72	0.97

 $2 37 \,\mathrm{cm}^2$

 $345 \, \mathrm{cm}^2$

 $4 mu 72 \, \text{cm}^2$

 $90 \, \text{cm}^2$

해설

 $\overline{AC} = x$ 라 하면

 $\angle \mathbf{B} = 42^{\circ}$ 이므로 $x = 10 \times \tan 42^{\circ} = 10 \times 0.9 = 9$

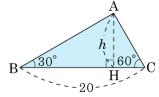
따라서 $\triangle ABC$ 의 넓이는 $10 \times 9 \times \frac{1}{2} = 45 \text{ (cm}^2)$ 이다.

11. 다음 그림과 같이 밑면의 반지름의 길이가 3 cm 이고 모선과 밑면이 이루는 각의 크기가 60 인 원뿔의 부피를 구하면?

 $9\sqrt{3}\pi \,\mathrm{cm}^3$

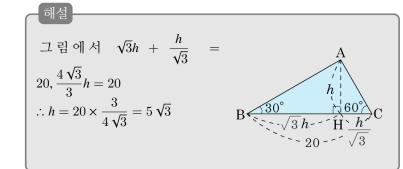
①
$$6\sqrt{2}\pi \,\mathrm{cm}^3$$

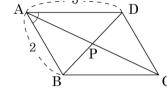
(4) $11\sqrt{2}\pi \,\mathrm{cm}^3$


②
$$7\sqrt{3}\pi \, \text{cm}^3$$

③ $27\pi \, \text{cm}^3$

$$\pi\,\mathrm{cm}^3$$

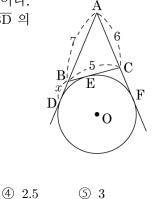

원뿔의 높이는
$$3 \cdot \tan 60^\circ = 3\sqrt{3} (\text{cm})$$


원뿔의 부피는 $\frac{1}{3} \times 9\pi \times 3\sqrt{3} = 9\sqrt{3}\pi (\text{cm}^3)$ 이다.

2. 다음 그림의 △ABC 에서 높이 *h* 를 구하면?

①
$$2\sqrt{5}$$
 ② $4\sqrt{3}$ ③ $5\sqrt{3}$ ④ $3\sqrt{5}$ ⑤ $5\sqrt{2}$

조CPD =
$$\frac{1}{4}$$
 \square ABCD
= $\frac{1}{4} \times 2 \times 3 \times \sin 60^{\circ}$
= $\frac{1}{4} \times 2 \times 3 \times \frac{\sqrt{3}}{2}$
= $\frac{3\sqrt{3}}{2}$


의 넓이는?
$$\frac{2}{B} \qquad C$$
 ② $2\sqrt{3}$ ③ $\frac{3\sqrt{3}}{4}$ ④ $4\sqrt{3}$ ⑤ $\frac{\sqrt{3}}{4}$

 $\overline{AB} = 7$, $\overline{AC} = 6$, $\overline{BC} = 5$ 일 때, \overline{BD} 의 길이는?

다음 그림에서 세 점 D, E, F 는 접점이다.

14.

1

해설
$$\overline{BD} = \overline{BE}$$
 , $\overline{CE} = \overline{CF}$ 이므로

② 1.5

$$\overline{AD} + \overline{AF} = (\overline{AB} + \overline{BD}) + (\overline{AC} + \overline{CF})$$

 $= (\overline{AB} + \overline{BE}) + (\overline{AC} + \overline{CE})$
 $= \overline{AB} + (\overline{BE} + \overline{CE}) + \overline{AC}$
 $= 7 + 5 + 6 = 18$
그런데 $\overline{AD} = \overline{AF}$ 이므로 $\overline{AD} = 18 \times \frac{1}{2} = 9$

$$\therefore \overline{BD} = \overline{AD} - \overline{AB} = 9 - 7 = 2$$