한 변의 길이가 2인 정삼각형의 넓이를 구하여라.

- 답:
- ▷ 정답: √3

(정삼각형의 넓이) = $\frac{\sqrt{3}}{4} \times 2^2 = \sqrt{3}$

2. 좌표평면 위의 세 점이 다음과 같을 때, 이 세 점을 연결한 삼각형은 어떤 삼각형인지 말하여라.

보기 A(0, 5), B(4, 2), C(6, 3)

해설

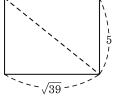
$$A(0, 5), B(4, 2), C(6, 3)$$
 $\overline{AB} = \sqrt{(0-4)^2 + (5-2)^2} = \sqrt{16+9} = 5$
 $\overline{BC} = \sqrt{(4-6)^2 + (2-3)^2} = \sqrt{5}$

 $= \sqrt{36+4} = \sqrt{40}$ $(\sqrt{40})^2 > 5^2 + (\sqrt{5})^2$ 이므로 둔각삼각형이다.

 $\overline{\text{CA}} = \sqrt{(0-6)^2 + (5-3)^2}$

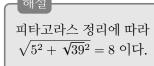
į

3. 다음 그림에서 직사각형의 대각선의 길이는?



① $2\sqrt{15}$ ② $3\sqrt{7}$

(4



- 4. 대각선의 길이가 8인 정사각형의 한 변의 길이를 구하여라.
 - ① $\frac{8\sqrt{2}}{3}$ ② 4 ③ $2\sqrt{4}$ ④ $8\sqrt{2}$ ⑤ $4\sqrt{2}$

정사각형의 한 변을
$$x$$
라고 하면 $x^2 + x^2 = 8^2$ $2x^2 = 64$

 $x^2 = 32$

 $\therefore x = \sqrt{32} = 4\sqrt{2}$

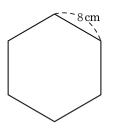
다음 그림의 이등변삼각형 ABC 에서 높이 ĀĦ
 는?
 ① √2
 ② 2√2
 ③ 3√3

$$\overline{AH} = \sqrt{6^2 - 2^2} = 4\sqrt{2}$$

⑤ $5\sqrt{2}$

 $4\sqrt{2}$

6. 다음 그림과 같이 한 변의 길이가 8 cm 인 정육각 형의 넓이를 구하여라.



$$ightharpoonup$$
 정답: $96\sqrt{3}$ $\underline{\mathrm{cm}^2}$

$$\therefore \frac{\sqrt{3}}{4} \times 8^2 \times 6 = \frac{\sqrt{3}}{4} \times 64 \times 6 = 96\sqrt{3} \text{ (cm}^2)$$

7. 다음 그림에서 \triangle ABC, \triangle EAC, \triangle EDC 는 모두 직각삼각형이고, $\overline{AB} = \overline{BC} = 3$ cm, \angle AEC = 60°, \angle CED = 45°일 때, \triangle EDC 의 넓이는?

 $\bigcirc 3 \text{ cm}^2$

 2 4 cm^2

 $36 \, \text{cm}^2$ $10 \, \text{cm}^2$

A 60°45 x D B -3cm - C

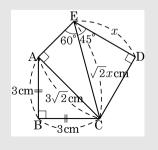
설

 $\triangle ABC$ 에서 $\overline{AC} = 3\sqrt{2} \text{ cm}$ $\triangle ECD$ 에서 $\overline{EC} = \sqrt{2}x$ $\triangle AEC$ 에서 $\sqrt{2}x: 3\sqrt{2} = 2: \sqrt{3}$

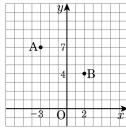
따라서 ΔEDC 의 넓이는

 $\frac{1}{2} \times 2\sqrt{3} \times 2\sqrt{3} = 6 \text{ (cm}^2) \text{ 이다.}$

 $\sqrt{6}x = 6\sqrt{2}$ $\therefore x = 2\sqrt{3} \text{ (cm)}$



8. 좌표평면 위의 세 점 A(-3,7), B(2,4), C(1,a) 가 $\overline{AB} = \overline{AC}$ 일 때, 가능한 a 의 값의 합을 구하여라. A٠ ◆B



- 답:

해설

$$\overline{AC} = \sqrt{(-3-1)^2 + (7-a)^2}$$

$$= \sqrt{(a-7)^2 + 16}$$

$$\sqrt{34} = \sqrt{(a-7)^2 + 16}$$

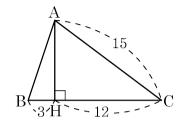
$$34 = (a-7)^2 + 16$$

 $(a-7)^2 = 18$ $a^2 - 14a + 49 = 18$ $a^2 - 14a + 31 = 0$

따라서 두 근의 합은 $-\left(\frac{-14}{1}\right) = 14$ 가 된다.

 $\overline{AB} = \sqrt{(-3-2)^2 + (7-4)^2} = \sqrt{34}$

9. 다음 그림과 같은 삼각형 ABC 에 대하여 \overline{AB} 의 길이는?



① $7\sqrt{2}$ ② 13 ③ $6\sqrt{2}$ ④ $3\sqrt{10}$ ⑤ 5

$$\triangle AHC$$
 에서 $\overline{AH} = \sqrt{15^2 - 12^2} = \sqrt{81} = 9$
 $\triangle ABH$ 에서 $\overline{AB} = \sqrt{9^2 + 3^2} = \sqrt{90} = 3\sqrt{10}$

10. 다음 그림의 □ABCD 에서 ∠ABD = ∠BDC = 90°, ∠DBC = 60° 일 때, 두 대각선 AC, BD 의 길이를 각각 구하여라.

A 5 5 B 60° P

타

▶ 답:

ightharpoons 정답: $\overline{AC} = \sqrt{223}$

ightharpoons 정답: $\overline{\mathrm{BD}}=3\,\sqrt{3}$

 $\therefore \overline{AC} = \sqrt{(3\sqrt{3})^2 + 14^2} = \sqrt{223}$