1. 다음 도수분포표는 어느 반에서 20 명 학생의 체육 실기 점수를 나타낸 것이다. 이 반 학생들의 체육 실기 점수의 분산과 표준편차는?점수(점) 1 2 3 4 5

2

 $3 \mid 2$

① 분산:	1.15,	표준편차 :	$\sqrt{1.15}$

학생 수(명)

③ 분산: 1.19, 표준편차: √1.19

④ 분산: 1.21, 표준편차: √1.21
 ⑤ 분산: 1.23, 표준편차: √1.23

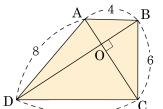
분포의 분산을 구하여라.(단, 평균, 분산은 소수 첫째자리에서 반올림한다.)

;	계급	1	도수
3이상	~	5미만	3
5 ^{이상}	~	7미만	3
7 ^{이상}		9미만	2
9 ^{이상}	~	11 ^{미만}	2

다음은 학생 10 명의 윗몸일으키기 횟수에 대한 도수분포표이다. 이

다음 도수 분포표는 어느 반 32명의 일주일 간 영어 공부 시간을 나타 낸 것이다. 평균, 표준편차를 차례대로 나열한 것은?

공부시간(시간)		학생 수(명)	
0이상	~	$2^{ m 미만}$	4
2이상	~	4미만	2
4 ^{이상}	~	6미만	18
6 ^{이상}	~	8미만	6
8이상	~	10 ^{미만}	2
	합계		32

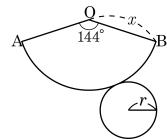

4 6.3

부의 \overline{EF} 는 \overline{AD} , \overline{BC} 와 평행하다. 선분의 끝점과 꼭짓점 사이의 거리가 각각 다음과 같을 때, x의 값은? ② $3\sqrt{3}$ \bigcirc 5

다음 그림과 같이 직사각형 ABCD 의 내

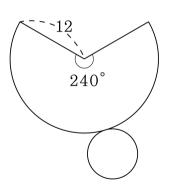
 $\sqrt{30}$

x의 값을 구하여라.



사각형 ABCD 에서 $\overline{AC} \perp \overline{BD}$ 이고 $\overline{AB} = 4$, $\overline{BC} = 6$, $\overline{AD} = 8$ 일 때,

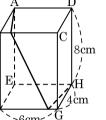
⑤ 88c


호 AB 의 길이는 $8\pi \, \mathrm{cm}$ 이고 중심각의 크기가 144° 인 원뿔의 전개도 가 있다. 이 원뿔의 부피는?

①
$$\frac{8\sqrt{3}}{3}\pi\text{cm}^3$$
 ② $\frac{8\sqrt{21}}{3}\pi\text{cm}^3$

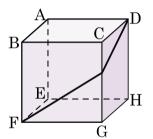
① $\frac{8\sqrt{3}}{3}\pi\text{cm}^3$ ④ $\frac{16\sqrt{21}}{3}\pi\text{cm}^3$

3. 전개도가 다음 그림과 같은 원뿔의 부피를 V 라 할 때, $\frac{3\sqrt{5}}{5\pi}V$ 의 값을 구하여라.

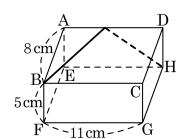


호 AB 의 길이는 4π 이고 중심각의 크기가 120° 인 원뿔의 전개도가 있다. 이 원뿔의 부피를 구하면?

	$ 2 \frac{10\sqrt{3}}{3}\pi \text{cm}^3 $	$ 3 \frac{16\sqrt{2}}{3} \pi \text{cm}^3 $	
16.15	9	9	


(4) $\frac{10 \text{ V3}}{3} \pi \text{cm}^3$ (5) $16 \sqrt{2} \pi \text{cm}^3$

10. 다음 그림과 같은 직육면체의 꼭짓점 A 에서 선분 BC, 선분 FG 를 지나 점 H 에 이르는 최단 거리를 전개도로 나타내어 구하여라.



11. 다음 그림과 같이 한 모서리의 길이가 1 인 정육면체의 꼭짓점 F 에서 모서리 CG 를 지나 꼭짓점 D 에 이르는 최단 거리를 구하면?

$$0.\sqrt{2}$$
 2 $\sqrt{3}$ 3 2 4 $\sqrt{5}$ 5 $\sqrt{6}$

12. 다음 그림의 직육면체에서 점 B 부터 점 H 까지의 최단거리를 구하여라.

①
$$\sqrt{260} \, \text{cm}$$
 ② $\sqrt{270} \, \text{cm}$ ③ $\sqrt{280} \, \text{cm}$

 $4 \sqrt{290} \text{ cm}$ $\sqrt{300} \text{ cm}$