- 1. 중심이 (2,-1) 이고, 반지름의 길이가 $\sqrt{5}$ 인 원의 방정식은?
 - ③ $(x-2)^2 + (y+1)^2 = 5$ ④ $(x-2)^2 + (y+1)^2 = \sqrt{5}$
 - ① $(x+2)^2 + (y-1)^2 = 5$ ② $(x+2)^2 + (y-1)^2 = \sqrt{5}$
 - $(x-2)^2 + (y+1)^2 = 5^2$

중심이 (2,-1) , $r:\sqrt{5}$ 인 원

 $\Rightarrow (x-2)^2 + (y+1)^2 = 5$

- **2.** 점 (1,2) 를 중심으로 하고 점(3,-2) 를 지나는 원의 방정식은?
 - ① $(x-1)^2 + (y+2)^2 = 4$ ② $(x+1)^2 + (y-2)^2 = 32$
 - ③ $(x-1)^2 + (y-2)^2 = 20$ ④ $(x+1)^2 + (y+2)^2 = 12$
 - $(x-1)^2 + (y-2)^2 = 16$

해설

원의 반지름을 r 이라 하면

 $(x-1)^2 + (y-2)^2 = r^2$ 이 (3,-2) 를 지나므로 $(3-1)^2 + (-2-2)^2 = r^2$: $r^2 = 20$ $\therefore (x-1)^2 + (y-2)^2 = 20$

- **3.** 점 (a,1) 을 중심으로 하고 점 (0,-3) 을 지나는 원의 반지름의 길이가 5 일 때, 양수 *a* 의 값은?
- ① 2 ② $2\sqrt{2}$ ③ 3 ④ $2\sqrt{3}$ ⑤ 4

점 (a,1) 을 중심으로 하고 반지름의 길이가 5인

해설

원의 방정식은 $(x-a)^2 + (y-1)^2 = 5^2$ 이 점(0,-3)을 지나므로 $(0-a)^2 + (-3-1)^2 = 25$ $a^2 = 9 \quad \therefore a = 3, (\because a > 0)$

- 4. A(2, 0), B(0, 2)에서의 거리의 제곱의 합이 12인 점 P(x, y)의 자취 를 나타내는 식은?

 - ① $x^2 + y^2 + 2x + 2y = 2$ ② $x^2 + y^2 + 2x 2y = 2$

 - ③ $x^2 + y^2 2x + 2y = 2$ ④ $x^2 + y^2 2x 2y = 2$

 $(\overline{PA})^2 = (x-2)^2 + y^2$ $(\overline{PB})^2 = x^2 + (y-2)^2$

 $\therefore (x-2)^2 + y^2 + x^2 + (y-2)^2 = 12$ $\therefore x^2 + y^2 - 2x - 2y = 2$

5. $x^2 + y^2 + 8x - 6y - 1 = 0$ 과 중심이 같고, 원점을 지나는 원의 반지름의 길이를 구하면?

- ① 4
- ②5 3 6 4 8 5 10

해설

 $x^{2} + y^{2} + 8x - 6y - 1 = 0$ $\Rightarrow (x+4)^{2} + (y-3)^{2} = 26$ 중심: (-4,3)

 $\therefore (x+4)^2 + (y-3)^3 = r^2,$

(0, 0)을 지나므로

 $r = 5(\because r > 0)$

6. 원 $x^2 + y^2 + 4x - 2y + 1 = 0$ 의 반지름의 길이는?

① 1 ②2 ③ 3 ④ 4 ⑤ 5

 $\begin{cases} x^2 + y^2 + 4x - 2y + 1 = 0 \\ \Rightarrow (x+2)^2 + (y-1)^2 = 4 = 2^2 \end{cases}$

- 7. 원 $x^2 + y^2 2y 3 = 0$ 과 중심이 같고, 점 (1, 1)을 지나는 원의 방정식은?

 - ① $x^2 + y^2 2y = 0$ ② $x^2 + y^2 2x + 1 = 0$

 - ③ $x^2 + y^2 2y 1 = 0$ ④ $x^2 + y^2 2x + 3 = 0$

 $x^2 + y^2 - 2y - 3 = 0$ 과 중심이 같은 원의 방정식은 $x^2 + y^2 - 2y + k = 0$ 의 꼴이다. 또, 점 (1,1)을 지나므로

 $1+1-2+k=0 \quad \therefore k=0$

따라서, 구하는 방정식은 $x^2 + y^2 - 2y = 0$

- 8. 임의의 실수 a에 대하여 원 $x^2 + y^2 + ax + (a+2)y (2a+4) = 0$ 은 두 정점 A, B 를 지난다. 이 때 선분 AB 의 중점의 좌표를 구하면?
 - $\begin{array}{ccc}
 \textcircled{1} & \left(\frac{1}{2}, \ 1\right) & & \textcircled{2} & \left(\frac{1}{2}, \ 0\right) & & \textcircled{3} & \left(\frac{1}{2}, \ \frac{3}{2}\right) \\
 \textcircled{4} & \left(\frac{3}{2}, \ 0\right) & & \textcircled{5} & \left(\frac{3}{2}, \ \frac{1}{2}\right)
 \end{array}$
 - 해설 $x^2 + y^2 + ax + (a+2)y - (2a+4) = 0$ $\Rightarrow x^2 + y^2 + 2y - 4 + a(x+y-2) = 0$ $\Rightarrow x^2 + y^2 + 2y - 4 = 0 \cdots 0$ 이고 $x + y - 2 = 0 \cdots 0$ ② 에서 y = -x + 2 = 0 에 대임하며

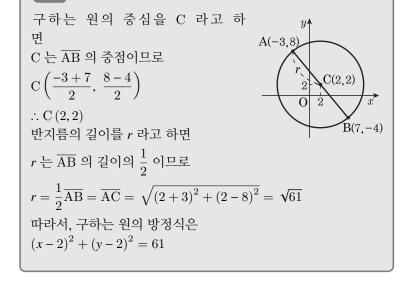
- 두 점 A(1, 2), B(-1, 4)를 지름의 양 끝점으로 하는 원의 방정식은? 9.

 - ① $(x-1)^2 + (y-4)^2 = 4$ ② $(x+1)^2 + (y-2)^2 = 8$ ③ $(x-1)^2 + (y-2)^2 = 4$ ④ $x^2 + (y-3)^2 = 2$
 - $3 x^2 + y^2 = 2$

원의 중심: $\left(\frac{1+(-1)}{2}, \frac{2+4}{2}\right) = (0, 3)$ 반지름: $\frac{\sqrt{2^2+2^2}}{2}$

.. 원의 방정식 : $x^2 + (y-3)^2 = (\sqrt{2})^2$

- 10. 두 점 A (-3, 8), B (7, -4) 를 지름의 양 끝으로 하는 원의 방정식을
 - ① $(x-1)^2 + (y-1)^2 = 18$ ② $(x-2)^2 + (y-2)^2 = 32$ ③ $(x-1)^2 + (y-1)^2 = 7$ ④ $(x-3)^2 + (y-3)^2 = 22$
 - $(x-2)^2 + (y-2)^2 = 61$



- **11.** 좌표평면 위의 두 점 A(1, 0), B(5, 0) 에 대하여 선분 AB 의 중점과 선분 $AB \equiv 1:3$ 으로 외분하는 점을 지름의 양 끝점으로 하는 원의 방정식은?
 - ① $(x-1)^2 + y^2 = 4$ ② $x^2 + y^2 = 4$ ③ $(x-1)^2 + y^2 = 2$ ④ $x^2 + (y-4)^2 = 16$

선분 AB 의 중점은 (3, 0)이고,

선분 AB 를 1:3으로 외분하는 점은 (-1,0), 이 두 점을 지름의 양 끝점으로 하는 원의 방정식은 중심이 M(1, 0), 반지름 2 인 원이다. 따라서 $(x-1)^2 + y^2 = 4$

- 12. 두 점 (-2, 1), (6, 5) 을 지름의 양 끝점으로 하는 원의 방정식을 구하면?
 - ① $x^2 + y^2 2x 4y 7 = 0$
 - $2 x^2 + y^2 + 4x + 8y 15 = 0$
 - $3 x^2 + y^2 2x 6y 5 = 0$
 - - 해설

i) 원의 중심은 두 점의 중점과 같다.

- $\Rightarrow \left(\frac{-2+6}{2}, \frac{1+5}{2}\right) = (2, 3)$
- ii) 반지름 길이는 중심과 한 점 사이의 거리와 같 다.
- $\Rightarrow \sqrt{(2-6)^2 + (3-5)^2} = 2\sqrt{5}$: 원의 방정식은 $(x-2)^2 + (y-3)^2 = (2\sqrt{5})^2$ $\Rightarrow x^2 + y^2 - 4x - 6y - 7 = 0$

- **13.** 세 점 (-1, 1), (2, 2), (6, 0)을 지나는 원의 중심의 좌표는?
 - ① (2,3)
- $\bigcirc (-2,3)$
- (2, -3)
- (-2, -3)

세 점 (-1, 1), (2, 2), (6, 0)을 지나는 원의 방정식을 $x^2 + y^2 + ax + by + c = 0$ 이라 하면

이 원이 세점을 지나므로

 $(-1)^2 + 1^2 - a + b + c = 0$ $\therefore a - b - c = 2 \cdot \dots \cdot \bigcirc$

 $2^2 + 2^2 + 2a + 2b + c = 0$ $\therefore 2a + 2b + c = -8 \cdot \cdot \cdot \cdot \cdot \bigcirc$

 $6^2 + 6a + c = 0$

 $\therefore 6a + c = -36 \cdot \cdots \bigcirc$ ⊙, ⓒ, ⓒ을 연립하여 풀면

a = -4, b = 6, c = -12즉, $x^2 + y^2 - 4x + 6y - 12 = 0$ 이므로

표준형으로 나타내면

 $(x-2)^2 + (y+3)^2 = 25$

따라서, 원의 중심의 좌표는 (2, -3) 이다.

14. 세 점 (0, 0), (2, 0), (1, 1)을 지나는 원의 방정식이 $(x-a)^2 + (y-b)^2 =$ r^2 (단, r > 0)라고 할 때, a + b + r 의 값을 구하면?

① 2 3 3 4 4 5 5 6

해설 구하는 원의 방정식을

 $x^2 + y^2 + Ax + By + C = 0$ 으로 놓는다. 세 점 (0, 0), (2, 0), (1, 1)은 $x^2 + y^2 + Ax + By + C = 0$ 위의 점이므로 등식이 성립한다. 따라서 세 점을 대입한 식을 연립시키면 구하는 원의 방정식은 $x^2 + y^2 - 2x = 0$ 이다. $x^2 + y^2 - 2x = 0$ 을 정리하면 $(x-1)^2 + y^2 = 1$ 이다. 따라서 a=1, b=0, r=1 이므로

a+b+r=2이다.

- **15.** 세 점(-3, 1), (5, 5), (-2, 2) 를 꼭지점으로 하는 삼각형의 외접원의 중심(외심)의 좌표를 구하면?
 - ① (3, -1) ② (2, 1) ③ (4, 2)4 (-3, -2) 5 (3, -2)

외접원의 방정식을

 $x^2+y^2+Ax+By+C=0$ · · · ① 이라 하면, ⑤은 (-3, 1), (5, 5), (-2, -2)를 지나므로

 $\begin{cases} 50 + 5A + 5B + C = 0 \end{cases}$

8 - 2A - 2B + C = 0

세 식을 연립하여 풀면

 $\int 10 - 3A + B + C = 0$

 $A=\text{-}4,\ B=\text{-}2$, C=-20따라서, 구하는 원은 $x^2 + y^2 - 4x - 2y - 20 = 0$

즉, $(x-2)^2 + (y-1)^2 = 25$ 이고 중심은 (2, 1)

- ${f 16}$. 세 점 A(2, 1), B(-4, 3), C(-1, -3) 을 꼭지점으로 하는 삼각형 ABC 의 외심의 좌표를 (a, b) 라고 할 때, a + b 를 구하면?
 - **④**−1 ⑤ −3 ② 3 3 4 ① -2

외심은 외접원의 중심이므로 외심을 O 라하면

 $\sqrt{(a-2)^2 + (b-1)^2} = \sqrt{(a+4)^2 + (b-3)^3}$ $\Rightarrow 3a - b = -5 \cdots \bigcirc$ $\sqrt{(a-2)^2 + (b-1)^2} = \sqrt{(a+1)^2 + (b+3)^3}$ $\Rightarrow 6a + 8b = -5 \cdots \bigcirc$

⊙, ⓒ 를 연립하면, $a = -\frac{3}{2}, \ b = \frac{1}{2} \ \Rightarrow \ a + b = -1$

 $\overline{OA} = \overline{OB} = \overline{OC}$ 이다.

17. 중심이 직선 y = x 위에 있고, 두 점 A(1, -1), B(3, 5) 를 지나는 원의 반지름은 ?

① $\sqrt{7}$ ② $2\sqrt{2}$ ③ $\sqrt{10}$ ④ $2\sqrt{3}$ ⑤ $\sqrt{13}$

중심이 직선 y = x 위에 있으므로

구하는 원의 방정식의 중심을 (a, a), 반지름을 r 라고 하면,

 $(x-a)^2 + (y-a)^2 = r^2$

해설

이것이 A(1, -1), B(3, 5)를 지나므로 $(1-a)^2 + (-1-a)^2 = r^2 \cdots \textcircled{1}$

 $(3-a)^2 + (5-a)^2 = r^2 \cdots 2$ ① - ②을 하면, 16a - 32 = 0 ∴ a = 2

이것을 ① 에 대입하면, $r^2 = 10$

 $\therefore (x-2)^2 + (y-2)^2 = 10$

∴ 원의 반지름은 √10

18. 중심 C 가 직선 y=2x+1 위에 있고 두 점 (2, 1), (6, 5) 를 지나는 원의 면적은?

① 10π ② 12π ③ 14π ④ 16π ⑤ 18π

구하는 원을

해설

 $x^2 + y^2 + 2Ax + 2By + C = 0 \cdots$ ①라 두면 ①은 (2, 1), (6, 5)를 지나므로

 $4+1+4A+2B+C=0\cdots$ 2

36 + 25 + 12A + 10B + C = 0 · · · · · · · ③ 또한 ①의 중심은 (-A, -B) 이므로

 $-B = 2 \cdot (-A) + 1 \cdot \cdots \cdot \oplus$ ②, ③, ④에서 A = -2, B = -5, C = 13 이고

①, ③, ④에서 A = -2, B = -5, C = 13 이고 ①의 반지름의 길이는 $\sqrt{A^2 + B^2 - C} = \sqrt{16}$

- ①의 먼저름의 실어는 VA² + B² - C = VI6 - 구하는 원의 면적은 16π

중심 C(a, 2a + 1) 이라 하면

해설

 $(x-a)^2 + (y-2a-1)^2 = r^2$ (2.1) (6.5) 를 지나므로 간

(2, 1), (6, 5) 를 지나므로 각각 대입하면

 $(2-a)^{2} + (1-2a-1)^{2} = r^{2} \cdot \cdot \cdot \mathbb{I}$ $(6-a)^{2} + (5-2a-1)^{2} = r^{2} \cdot \cdot \cdot \mathbb{I}$

①, ②를 연립해서 풀면 a=2, ①에 대입하면 r=4

- **19.** 중심이 직선 y = x + 3 위에 있고 점 (6, 2)를 지나며, x 축에 접하는 원의 반지름 중 가장 작은 것은?
 - ③ 7 ④ 14 ⑤ 17 ① 2

원의 중심을 (a, a+3) 으로 놓으면 원의 방정식은 $(x-a)^2 + (y-a-3)^2 = (a+3)^2$

이 원이 (6, 2)를 지나므로

 $(6-a)^2 + (a+1)^2 = (a+3)^2$ 에서

(a-2)(a-14) = 0 $\therefore a = 2, 14$

원의 반지름중 작은 것은 a+3=2+3=5

해설

20. 중심이 직선 2x+y=0 위에 있고, 두 점 (3, 0), (0, 1) 을 지나는 원의 방정식은 ?

①
$$x^2 + y^2 - 2x + 4y - 6 = 0$$

$$2 x^2 + y^2 + 2x - 4y - 6 = 0$$

$$35x^2 + 5y^2 - 8x + 16y - 21 = 0$$

$$4 5x^2 + 5y^2 + 8x - 16y - 21 = 0$$

구하는 원의 중심이 직선 2x + y = 0 위에 있으므로 중심을 (a, -2a) 라 할 수 있다.

(a, -2a) 다 일 두 있다. $(x-a)^2 + (y+2a)^2 = r^2$ 점 (3, 0) 을 지나므로,

 $(3-a)^2 + (2a)^2 = r^2 \cdots ①$ 또, 점 (0, 1) 을 지나므로,

 $a^{2} + (1+2a)^{2} = r^{2} \cdot \cdot \cdot \textcircled{2}$

①, ②에서 $a = \frac{4}{5}$, $r^2 = \frac{37}{5}$ $\therefore \left(x - \frac{4}{5}\right)^2 + \left(y + \frac{8}{5}\right)^2 = \frac{37}{5}$

정리하면
$$5x^2 + 5y^2 - 8x + 16y - 21 = 0$$