- 1. 용제는 4 회에 걸쳐 치른 수학 시험 성적의 평균이 90 점이 되게 하고 싶다. 3 회까지 치른 수학 평균이 89 점일 때, 4 회에는 몇 점을 받아야 하는가?
 - ① 90 점 ② 91 점 ③ 92 점 ④ 93 점 ⑤ 94 점

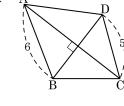
해설 $1,\ 2,\ 3$ 회 때 각각 받은 점수를 $a,\ b,\ c$, 다음에 받아야 할 점수를 x 점이라고 하면

 $\frac{a+b+c}{3} = 89, \ a+b+c = 267$

 $\frac{a+b+c+x}{4} = 90, \quad (a+b+c)+x = 360, \quad 267+x =$ 360 : x = 93따라서 93 점을 받으면 평균 90 점이 될 수 있다.

2. 다음 그림의 □ABCD에서 $\overline{AD}^2 + \overline{BC}^2$ 의 값은?

- ① 11 ② 30 ④ 56 ③61
- 3 41



해설 대각선이 직교하는 사각형에서 두 쌍의 대변의 제곱의 합이 서로 같다. $\therefore \ \overline{AD}^2 + \overline{BC}^2 = 5^2 + 6^2 = 61$

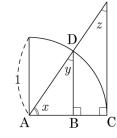
- 3. 다음 그림과 같이 $\overline{\mathrm{AB}}=6\,\mathrm{cm},\ \overline{\mathrm{AD}}=$ $10\,\mathrm{cm}$ 인 직사각형 모양의 종이를 점 D 가 $\overline{\mathrm{BC}}$ 위에 오도록 접었을 때, $\overline{\mathrm{BE}}$ 의 길이는?
- _ 10cm - _ 6cm
- 45 cm

① $2\sqrt{2}$ cm

- ②8 cm \Im 7 cm
- $3 2\sqrt{3} \text{ cm}$

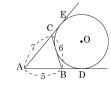
 $\overline{\mathrm{AE}}=\overline{\mathrm{AD}}$ 이므로 피타고라스 정리에서 $\overline{\mathrm{BE}}=\sqrt{10^2-6^2}=\sqrt{64}=8 (\,\mathrm{cm})$

- 다음 그림과 같이 반지름의 길이가 1인 사분원에 대하여 ∠DAB = x, ∠ADB = y, ∠DEC = z라할때, 다음 중 옳지 않은 것은?
 ① sin y = sin z
 ② tan y = tan z
 - $\Im \tan x = \overline{\text{CE}}$



 $\triangle AEC \bigcirc \triangle ADB \ (\because AA 젊습)$ $\cos z = \frac{\overline{EC}}{\overline{AE}} = \frac{\overline{BD}}{\overline{AD}} = \overline{BD}$

다음 그림에서 \overline{AD} , \overline{AE} , \overline{BC} 는 원 O 의 접선이다. $\overline{AB}=5$, $\overline{BC}=6$, $\overline{AC}=7$ 일 때, \overline{BD} 의 길이는? **5.**



① 3 ② $\frac{7}{2}$ ③ 4 ④ $\frac{9}{2}$

⑤ 5

 $\overline{\mathrm{BD}} = x$, $\overline{\mathrm{CE}} = 6 - x$

해설

7 + 6 - x = 5 + x $\therefore x = 4$

6. 5개의 변량 3,5,9,6,*x*의 평균이 6일 때, 분산은?

① 1 ② 2 ③ 3

⑤ 5

주어진 변량의 평균이 6이므로 $\frac{3+5+9+6+x}{5} = 6$ 23+x=30

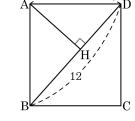
$$23 + x = 30$$

 $\therefore x = 7$

변량의 편차는 -3, -1, 3, 0, 1이므로 분산은 $\frac{(-3)^2 + (-1)^2 + 3^2 + 0^2 + 1^2}{5} = \frac{9 + 1 + 9 + 1}{5} = \frac{20}{5} = 4$

다음 그림에서 □ABCD 는 직사각형이고, 7. $\overline{
m AH}$ \perp $\overline{
m BD}$ 이다. $\overline{
m AH}$ 의 길이를 구하여라.

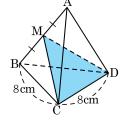
① $16\sqrt{5}$ ② $8\sqrt{5}$ ③ $\frac{4\sqrt{5}}{3}$ ④ $\frac{16\sqrt{5}}{3}$



$$\triangle ABD = \frac{1}{-} \times \overline{BD} \times \overline{AH} = \frac{1}{-} \times \overline{AB} \times$$

$$\triangle ABD$$
 에서 $\overline{AB} = \sqrt{12^2 - 8^2} = 4\sqrt{5}$
 $\triangle ABD = \frac{1}{2} \times \overline{BD} \times \overline{AH} = \frac{1}{2} \times \overline{AB} \times \overline{AD}$ 이므로 $\frac{1}{2} \times 12 \times \overline{AH} = \frac{1}{2} \times 4\sqrt{5} \times 8$
 $\therefore \overline{AH} = \frac{8\sqrt{5}}{3}$

다음 그림과 같이 한 모서리의 길이가 8cm 8. 인 정사면체에서 점 M이 \overline{AB} 의 중점일 때, △MCD 의 넓이를 구하면?



- ① $8\sqrt{3}\text{cm}^2$ ② $4\sqrt{2}\text{cm}^2$ ③ $4\sqrt{3}\text{cm}^2$ ④ $16\sqrt{2}\text{cm}^2$ ⑤ $32\sqrt{2}\text{cm}^2$

△ABC 는 정삼각형이므로

 $\overline{\mathrm{MC}} = \frac{\sqrt{3}}{2} \times 8 = 4\sqrt{3}(\mathrm{cm})$

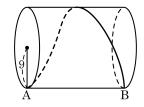
$$\overline{MC} = \frac{1}{2} \times 8 = 4 \text{ V3(cm)}$$
 $\overline{MC} = \overline{MD}$ 이므로 ΔMCD 는 이등변 삼각형이 된다.

 $\therefore (\triangle MCD \circ] \stackrel{\leftarrow}{=} \circ]) = \sqrt{(4\sqrt{3})^2 - 4^2}$

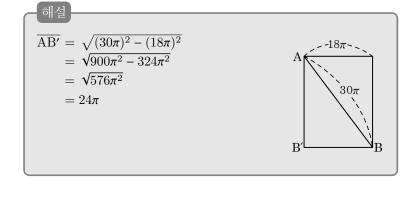
$$= \sqrt{32} = 4\sqrt{2}(\text{cm})$$

$$\therefore \triangle MCD = 8 \times 4 \sqrt{2} \times \frac{1}{2} = 16 \sqrt{2} (cm^2)$$

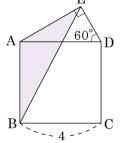
다음 그림은 점 A 를 지나 원기둥의 옆면을 9. 따라 점 B 까지 가는 최단 거리가 30π 인 원기둥이다. 이 원기둥의 밑면의 반지름의 길이가 9 라고 할 때, 원기둥의 높이 $\overline{\mathrm{AB}}$ 의 길이는?

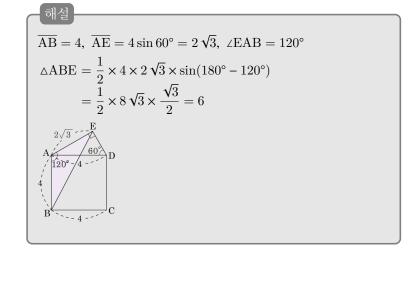


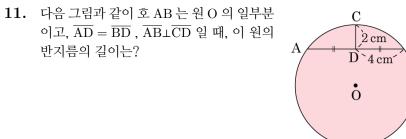
 $4)24\pi$ ① 21π ② 22π ③ 23π \bigcirc 25 π



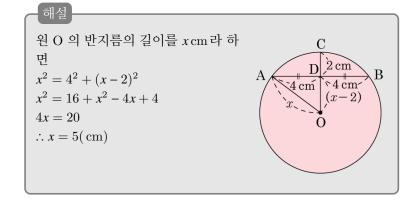
- 10. 다음 그림과 같이 한 변의 길이가 4 인 정사각 형 ABCD 의 한 변 AD 를 빗변으로 하는 직 각삼각형 AED 에서 ∠D = 60° 일 때, ΔABE 의 넓이는?
 - ① $2\sqrt{3}$ ② 4





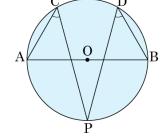


① 4 cm ② 5 cm ③ 6 cm ④ 7 cm ③ 8 cm



- **12.** 다음 그림과 같은 원 O 에서 ∠ACP + ∠BDP 의 값을 구하면?
 - ① 86° ② 88°

④ 92° ⑤ 94°



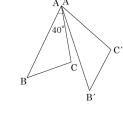
점 O 와 P 를 연결하면

 $\angle AOP = 2\angle ACP$ $\angle BOP = 2\angle BDP$

 $\angle BOP = 2\angle BDP$

- $\therefore \angle AOP + \angle BOP = 2\angle ACP + 2\angle BDP = 180^{\circ}$ $\therefore \angle ACP + \angle BDP = 90^{\circ}$

13. $\triangle A \cdot B \cdot C \cdot$ 은 점 A 를 중심으로 $\triangle ABC$ 를 40° 회전시킨 것이다. 점 A, B, B,, C, 이 한 원주 위에 있을 때, ∠ACB 의 크기는?



③110°

④ 115° ⑤ 120°

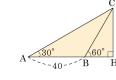
해설

① 100°

 $\triangle ABB$, 에서 $\overline{AB}=\overline{AB'}$ 이므로 $\angle ABB'=\angle AB'B=rac{1}{2}(180^\circ$ — $40^{\circ}) = 70^{\circ}, \triangle ABC \equiv \triangle A'B'C'$ 이므로 $\angle ACB = \angle A'C'B'$ □ABB'C' 이 한 원 위에 있으므로 대각의 크기의 합이 180° $\stackrel{\mathsf{A}}{=}$, $\angle ABB' + \angle AC'B' = 70^{\circ} + \angle AC'B' = 180^{\circ}$ $\therefore \angle AC'B = \angle ACB = 110^{\circ}$

② 105°

14. 다음은 $\triangle ABC$ 에서 $\angle A=30^\circ$, $\angle CBH=60^\circ$, $\overline{AB}=40$ 일 때, \overline{CH} 의 길이를 구하는 과정이다. □ 안의 값이 옳지 않은 것은?



$$\overline{\overline{CH}} = h 라고 하면
\overline{\overline{AH}} = \frac{h}{(7)}, \overline{\overline{BH}} = \frac{h}{(4)}$$

$$\overline{\overline{AB}} = (\overline{\overline{\Gamma}}) = \frac{h}{\tan 30^{\circ}} - \frac{h}{\tan 60^{\circ}}, h \times \frac{2}{\sqrt{3}} = (\overline{\overline{\Gamma}})$$

$$\therefore h = 40 \times \frac{\sqrt{3}}{2} = (\overline{\overline{\Gamma}})$$

④ (라) 40 ⑤ (마) $20\sqrt{3}$

① (가) tan 60° ② (나) tan 60° ③ (다) AH – BH

(가)에 tan 30° 가 들어가야 한다.

 $\overline{\overline{CH}} = h 라고 하면
\overline{\overline{AH}} = \frac{h}{\tan 30^{\circ}}, \overline{\overline{BH}} = \frac{h}{\tan 60^{\circ}}
\overline{\overline{AB}} = \overline{\overline{AH}} - \overline{\overline{BH}} = \frac{h}{\tan 30^{\circ}} - \frac{h}{\tan 60^{\circ}} = 40
h \left(\frac{1}{\tan 30^{\circ}} - \frac{1}{\tan 60^{\circ}}\right) = 40, h \times \frac{2}{\sqrt{3}} = 40$ $\therefore h = 40 \times \frac{\sqrt{3}}{2} = 20\sqrt{3}$

15. 다음 그림에서 $\triangle ABC$ 와 $\triangle ACD$ 의 넓이의 차는?

 $\textcircled{4} \ 14\sqrt{3} \ \text{cm}^2 \qquad \qquad \textcircled{5} \ 15\sqrt{3} \ \text{cm}^2$

① $(9 + \sqrt{2}) \text{ cm}^2$ ② $10 \sqrt{3} \text{ cm}^2$ ③ $12 \sqrt{3} \text{ cm}^2$

 $\triangle ABC = \frac{1}{2} \times 4 \times 2\sqrt{3} \times \sin 30^{\circ} = 2\sqrt{3} (\,\mathrm{cm}^2)$ $\Delta ACD = \frac{1}{2} \times 8 \times 6 \times \sin 60^{\circ} = 12 \sqrt{3} (\,\mathrm{cm}^2)$

따라서 $\triangle ABC$ 와 $\triangle ACD$ 의 넓이의 차는 $\triangle ACD$ – $\triangle ABC$ =

 $10\sqrt{3}$ (cm²) 이다.