다음 그림의 평행사변형 ABCD 에서 ∠A + ∠D 의 값을 구하여라.

B_\(\frac{70^\circ}{10^\circ}\)

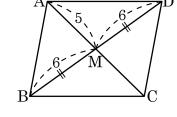
 답:

 ▷ 정답:
 180°

✓ 38 · 180_

평행사변형의 이웃하는 두 각의 크기의 합은 180°이다.

2. 다음 평행사변형 ABCD에서 \overline{BD} 의 중점을 M이라고 했을 때, $\overline{BM}=\overline{DM}=6$ 이 성립한다. \overline{CM} 의 길이를 구하여라.



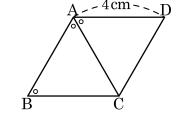
답:

➢ 정답: 5

해설

 $\overline{\mathrm{CM}} = \overline{\mathrm{AM}} = 5$

3. 다음 그림과 같은 □ABCD에서 ∠A의 이등분선이 점 C와 만난다. □ABCD가 평행사변형이 되도록 할 때, \overline{AB} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

정답: 4<u>cm</u>

▶ 답:

∠ACB = • = ∠ACD = ∠ADC이므로

해설

△ABC ≡ △ACD는 정삼각형이다. ∴ ĀB = 4cm

- 4. 다음 중 평행사변형이 되는 조건이 <u>아닌</u> 것을 골라라.
 - 두 대각선이 서로 다른 것을 이등분한다.
 - © 두 쌍의 대각의 크기가 각각 같다.
 - 한 쌍의 대변이 평행하고, 한 쌍의 대변의 길이가 같다.○ 두 쌍의 대변이 각각 평행하다.
 - ◎ 두 쌍의 대변의 길이가 각각 같다.

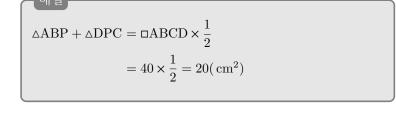
▷ 정답: ⓒ

▶ 답:

ⓒ 평행사변형이 되려면 한 쌍의 대변이 평행이고 그 길이가

같아야 한다

- 다음 그림에서 평행사변형 ABCD 의 넓이가 $40 {
 m cm}^2$ 일 때, $\Delta {
 m ABP} + \Delta {
 m DPC}$ 의 넓이를 구 **5**. 하면? $2 15 cm^2$
 - $\fbox{3}20 cm^2$
 - $4 25 \text{cm}^2$ $\odot 30 \mathrm{cm}^2$



- 6. 다음 중 평행사변형의 정의를 바르게 나타낸 것은?
 - 두 쌍의 대변의 길이가 각각 같다.
 두 대각선은 서로 다른 것을 이등분한다.
 - ③ 한 쌍의 대변이 평행하고 그 길이가 같다.
 - ④ 두 쌍의 대변이 각각 평행한 사각형이다.
 - ⑤ 두 쌍의 대각의 크기가 각각 같다.

평행사변형은 두 쌍의 대변이 각각 평행한 사각형이다.

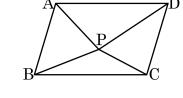
- 7. 다음은 (가)사각형의 각 변의 중점을 차례로 연결했을 때 생기는 사 각형이 (나)이다. 다음 중 옳지 <u>않은</u> 것은?
 - ① 가 : 등변사다리꼴 → 나 : 직사각형 ② 가: 평행사변형 → 나: 평행사변형

 - ③ 가 : 직사각형 → 나 : 마름모
 - ④ 가:정사각형 → 나:정사각형 ⑤ 가 : 마름모 → 나 : 직사각형

① 등변사다리꼴의 중점 연결 → 마름모

해설

다음 그림과 같이 평행사변형 ABCD 의 내부의 임의의 한 점 P 에 대하여 $\Delta PAD = 15 cm^2$, $\Delta PBC = 11 cm^2$, $\Delta PCD = 12 cm^2$ 일 때, ΔPAB 의 넓이를 구하여라. 8.



 $\underline{\mathrm{cm}^2}$

▷ 정답: 14<u>cm²</u>

▶ 답:

해설

 $\triangle PAB + \triangle PCD = \triangle PAD + \triangle PBC = \frac{1}{2} \times \Box ABCD, \triangle PAB + 12 =$ $15 + 11 = 26 (cm^2)$ ∴ $\triangle PAB = 14cm^2$

9. 다음 보기 중에서 평행사변형이 직사각형이 되기 위한 조건을 모두 몇 개인가?

보기 :

- ⊙ 이웃하는 두 변의 길이가 같다. © 이웃하는 두 각의 크기가 같다.
- © 한 내각의 크기가 90°이다.
- ② 두 대각선은 서로 다른 것을 이등분한다.
- ◎ 두 대각선의 길이가 같다.

① 1 개 ② 2 개

③33개 ④4개 ⑤5개

⊙ 마름모가 될 조건

해설

- ⑥ 직사각형이 될 조건
- ◎ 직사각형이 될 조건 ◉ 평행사변형이 될 조건
- ◎ 직사각형이 될 조건 ∴ ⓒ, ⓒ, ◉의 3개

10. □ABCD 에서 ∠x + ∠y = ()° 이다. () 안에 알맞은 수는?

해설

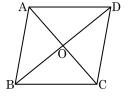
① 135 ② 140 ③ 145 ④ 150 ⑤ 155

4 150 **5** 155

 $\overline{\mathrm{AB}} = \overline{\mathrm{AD}}$ 이므로 $x = 35^{\circ}$ $y = \angle \mathrm{BAD}$

∠BAD = 180° - (35° + 35°) = 110° 따라서 y = 110° 이코, ∠x + ∠y = 35° + 110° = 145° 이다.

7 110° 11. 다음 그림의 평행사변형 ABCD 가 정사각형 이 되기 위한 조건을 모두 고르면? (정답 2 개)



- \bigcirc $\overline{AC} \perp \overline{DB}$, $\angle ABC = 90^{\circ}$ \bigcirc $\overline{AO} = \overline{BO}$, $\angle ADO = \angle DAO$
- $\overline{\text{OA}} = \overline{\text{OD}} , \overline{\text{AB}} = \overline{\text{AD}}$
- $\overline{\text{AC}} = \overline{\text{DB}} , \angle \text{ABC} = 90^{\circ}$

평행사변형이 정사각형이 되기 위해서는 두 대각선이 서로 수직

이등분하고 한 내각의 크기가 90°이다. 또한 네 변의 길이가 같고, 네 내각의 크기가 같으면 정사각형 이다.

12. 다음 사각형 중 평행사변형이 <u>아닌</u> 것은?(정답 2개)

① 정사각형 ② 직사각형 ③ 마름모 ④ 사다리꼴

(4) 사다리골 (5) 등면사다리

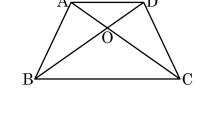
해설 두 쌍의 대변이 각각 평행한 사각형을 평행사변형이라 한다.

따라서 ④, ⑤는 평행사변형이라 할 수 없다.

- 13. 다음 중 두 대각선의 길이가 서로 같고, 서로 다른 것을 수직이등분하는 사각형은?
 - ① 정사각형 ② 등변사다리꼴 ③ 직사각형 ④ 평행사변형 ⑤ 마름모

두 대각선의 길이가 같고 서로 다른 것을 수직이등분하는 사각 형은 정사각형이다.

 ${f 14.}$ 다음 그림과 같이 ${f AD}//{f BC}$ 인 사다리꼴 ABCD에서 ${f OA}:{f OC}=1:2$ 이다. △AOD 의 넓이가 18 일 때, □ABCD 의 넓이는?



4 175

⑤ 180

3162

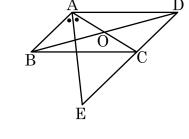
 $\triangle AOD : \triangle COD = 1 : 2$ 이므로

해설

① 148 ② 150

 $18: \triangle COD = 1:2 \quad \therefore \triangle COD = 36$ 이때 $\triangle ABD = \triangle ACD$ 이므로 $\triangle ABO = \triangle COD = 36$ 또, $\triangle ABO : \triangle COB = 1 : 2$ 이므로

 $36: \triangle COB = 1:2$ $\therefore \triangle COB = 72$ $\therefore \Box ABCD = 18 + 36 + 36 + 72 = 162$ 15. 다음 그림과 같은 평행사변형 ABCD의 두 대각선의 교점을 O라 하고, $\overline{AB}=3\mathrm{cm},\ \overline{OC}=2\mathrm{cm},\ \overline{BD}=8\mathrm{cm}$ 이다. 변 DC의 연장선과 $\angle BAC$ 의 이등분선의 교점을 E라 할 때, \overline{DE} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 7<u>cm</u>

해설

▶ 답:

 $\overline{\mathrm{AC}} = \overline{\mathrm{CE}} = 4$ 이므로 $\overline{\mathrm{DE}} = \overline{\mathrm{CD}} + \overline{\mathrm{CE}} = 3 + 4 = 7 \mathrm{(cm)}$ 이다.

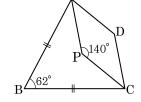
 $\angle BAE = \angle AEC$ 이므로 $\triangle ACE$ 는 이등변삼각형이다.

16. 다음 그림에서 □APCD 는 마름모이다. AB = BC 일 때, ∠BCD 의 크기는?

① 69° ② 73° ③ 76°

4 79°

⑤ 82°



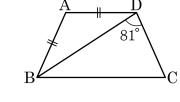
해설 AC 를 이으면

 $\angle BCA = (180^{\circ} - 62^{\circ}) \div 2 = 59^{\circ}$

 $\angle ACD = (180^{\circ} - 140^{\circ}) \div 2 = 20^{\circ}$

 $\therefore \angle BCD = \angle BCA + \angle ACD = 79^{\circ}$

17. 다음 그림의 $\Box ABCD$ 는 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이다. $\overline{AB} = \overline{AD}$, $\angle BDC = 81$ °일 때, $\angle DBC$ 의 크기는?



③33° ④ 35° ⑤ 37° ① 28° ② 31°

 $\angle DBC = \angle x$ 라 하면

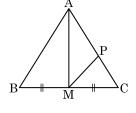
해설

 $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{ADB} = \angle x$ $\overline{\mathrm{AB}} = \overline{\mathrm{AD}}$ 이므로 $\angle \mathrm{ABD} = \angle x$

□ABCD는 등변사다리꼴이므로 ∠ABC = ∠DCB

 $2\angle x = 99 - \angle x, \ 3\angle x = 99$ \therefore $\angle x = 33^{\circ}$

 ${f 18}$. 다음 그림에서 점 ${f M}$ 은 ${f \overline{BC}}$ 의 중점이고 ${f \overline{AP}}$: $\overline{PC}=3:2$ 이다. $\triangle ABC=40\,\mathrm{cm^2}$ 일 때, △APM의 넓이는?



- $\bigcirc 4 \, \mathrm{cm}^2$ $4 16 \,\mathrm{cm}^2$
- 2 8 cm^2
- $\boxed{3}12\,\mathrm{cm}^2$
- $\odot 20\,\mathrm{cm}^2$

해설

 $\triangle ABM$ 과 $\triangle AMC$ 의 높이와 밑변의 길이가 같으므로, 두 삼각형의 넓이는 같다. $\triangle AMC = 20 cm^2$, $\triangle AMP = 20 \times \frac{3}{5} = 12 (\, cm^2)$

19. 다음 그림에서 점 M 은 \overline{BC} 의 중점이다. $\overline{\mathrm{AH}}=6\,\mathrm{cm},\,\overline{\mathrm{BC}}=16\,\mathrm{cm}$ 일 때, $\Delta\mathrm{DHC}$ 의 넓이를 구하여라.



▶ 답: ▷ 정답: 24<u>cm²</u>

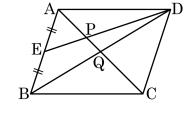
 cm^2

 $\overline{\mathrm{AM}}$ 을 그으면 $\Delta\mathrm{DHM} = \Delta\mathrm{AMD}$ 이므로

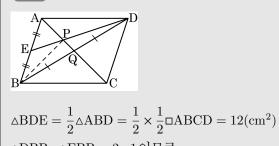
해설

 $\triangle DHC = \triangle AMC = \frac{1}{2} \triangle ABC$ $= \frac{1}{2} \times \frac{1}{2} \times 16 \times 6$ $= 24 \text{ (cm}^2\text{)}$

20. 다음 그림의 평행사변형 ABCD에서 점 E는 변 AB의 중점이고, $\overline{\rm DP}: \overline{\rm PE} = 2:1$ 이다. 평행사변형의 넓이는 $48{
m cm}^2$ 일 때, $\Delta {
m DPQ}$ 의 넓이는?

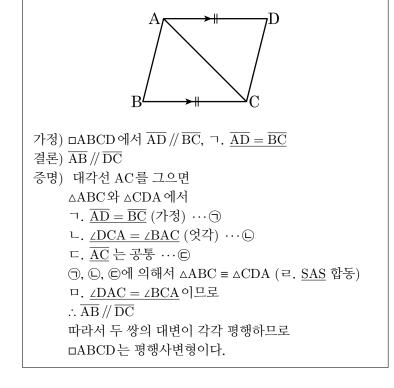


 3 5cm^2



2 2 2 2 Δ DBP: \triangle EBP = 2:1이므로 Δ DBP = $\frac{2}{3}$ \triangle BDE = $\frac{2}{3} \times 12 = 8 (\text{cm}^2)$ \triangle BPQ: \triangle DPQ = 1:1 \triangle DPQ = $\frac{1}{2}$ \triangle DBP = $\frac{1}{2} \times 8 = 4 (\text{cm}^2)$

21. 다음은 '한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사 변형이다.'를 증명하는 과정이다. 밑줄 친 부분 중 <u>틀린</u> 곳을 모두고르면?



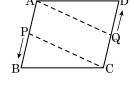
해설

② L ③ E ④ =

3 🗆

① ¬

 ${f 22.}$ ${f \overline{AB}}=100\,{
m m}$ 인 평행사변형 ABCD 를 점 P 는 A 에서 B 까지 매초 $5\,\mathrm{m}$ 의 속도로, 점 Q는 7m의 속도로 C 에서 D 로 이동하고 있다. P 가 A 를 출발한 4 초 후에 Q 가 점 C 를 출 발한다면 □APCQ가 평행사변형이 되는 것은 Q 가 출발한 지 몇 초 후인가?



① 5 초

② 8 초

③10 초

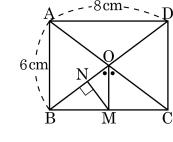
④ 12 초 ⑤ 15 초

$\square \mathrm{APCQ}$ 가 평행사변형이 되려면 $\overline{\mathrm{AP}} = \overline{\mathrm{CQ}}$ 가 되어야 하므로

해설

Q 가 이동한 시간을 x (초)라 하면 P 가 이동한 시간은 x+4(초)이다. $\overline{\mathrm{AP}} = 5(x+4), \ \overline{\mathrm{CQ}} = 7x, \ 5(x+4) = 7x$ ∴ x = 10 (초)이다.

 ${f 23}$. 다음 그림과 같은 직사각형 ABCD에서 ${f BD}=10\,{
m cm}$ 이다. $\angle{
m BOM}=$ ∠COM, MN⊥OB일 때, MN의 길이는?



4 3.6 cm

 \bigcirc 1.2 cm

- $21.6\,\mathrm{cm}$ ⑤ 4.8 cm
- $32.4\,\mathrm{cm}$

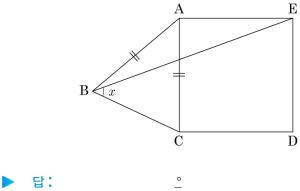
$$\overline{BO} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$$

$$\triangle OBM = \frac{1}{2} \times 4 \times 3 = \frac{1}{2} \times 5 \times \overline{MN}$$

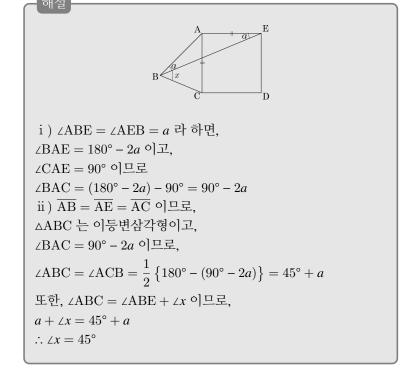
$$\therefore \overline{MN} = 2.4 \text{ (cm)}$$

$$\therefore \overline{MN} = 2.4 (cm)$$

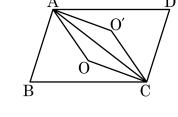
24. 다음 그림에서 \square ACDE 는 정사각형이고 \triangle ABC 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형일 때, $\angle x$ 의 크기를 구하여라.



▷ 정답: 45°



25. 평행사변형 ABCD 에서 점 O, O' 은 각각 △ABC, △ACD 의 외심이다. \Box AOCO' 은 어떤 사각형인가?



답:

▷ 정답: 마름모

해설 점 O, O' 가 △ABC, △ACD 의 외심이므로

 $\angle AOC = 2\angle B = \angle AO'C = 2\angle D$ $\angle OAC = \angle OCA$, $\angle O'AC = \angle O'CA$ $\angle O'AO = \angle O'CO$ 두 쌍의 대각의 크기가 같으므로 $\Box AOCO'$ 는 평행사변형이다. $\overline{AO'}//\overline{OC}$, $\overline{AO}//\overline{O'C}$ 이고 $\overline{AO} = \overline{OC} = \overline{AO'} = \overline{O'C}$ 이므로 $\Box AOCO'$ 는 마름모이다.