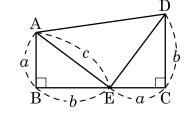

1. 다음 그림에서 x 의 값은?



피타고라스 정리에 따라 $4^2 + 2^2 = x^2$ $x^2 = 20$

해설

x > 0 이므로 $x = 2\sqrt{5}$ 이다.

2. 다음은 그림을 이용하여 피타고라스 정리를 설명한 것이다.

(가),(나) 에 알맞은 것을 차례대로 쓴 것을 고르면?

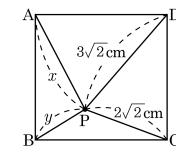
$$\triangle ABE + \triangle AED + \triangle ECD = \square ABCD$$
 이므로
$$\frac{1}{2}ab + (プ) + \frac{1}{2}ab = \frac{1}{2}(a+b)^2$$
 따라서 (나)이다.

(1)
$$(7)$$
 $\frac{1}{2}c^2$ (나) $a^2 + b^2 = c^2$
(2) (7) c^2 (나) $b^2 + c^2 = a^2$
(3) (7) $\frac{1}{2}c^2$ (나) $a^2 + b^2 = c$
(4) (7) c^2 (나) $b^2 - a^2 = c^2$
(5) (7) $\frac{1}{2}c^2$ (나) $a + b = c$

(3)
$$(7)$$
) $\frac{1}{2}c^2$ (나) $a^2 + b^2 =$

④ (가)
$$c^2$$
 (나) $b^2 - a^2 =$

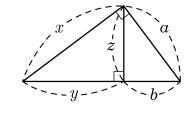
$$(7) \frac{1}{2}c^2 \qquad (4) a+b=c$$


$$\triangle ABE + \triangle AED + \triangle ECD = \square ABCD$$
 이므로
$$\frac{1}{2}ab + \frac{1}{2}c^2 + \frac{1}{2}ab = \frac{1}{2}(a+b)^2$$
 따라서 $a^2 + b^2 = c^2$ 이다.

3. 다음 그림의 직사각형 ABCD 에서 $\overline{AP}=\sqrt{6}, \overline{BP}=3$, $\overline{CP}=\sqrt{5}$ 일 때, \overline{DP} 의 길이는?

A $\sqrt{6}$ $\sqrt{6}$ $\sqrt{5}$ B

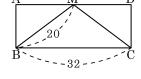
① $\sqrt{2}$ ② $\sqrt{3}$ ③ $2\sqrt{3}$ ④ $3\sqrt{2}$ ⑤ 8


다음과 같이 정사각형 ABCD 의 내부에 한 점 P 가 있다. $\overline{PC}=2\sqrt{2}\mathrm{cm}$, $\overline{PD}=3\sqrt{2}\mathrm{cm}$ 일 때, x^2-y^2 의 값은? 4.

- ① 2 ② 4 ③ 6
- **4** 9
- **⑤**10

$$x^2 + (2\sqrt{2})^2 = y^2 + (3\sqrt{2})^2, \ x^2 - y^2 = 18 - 8, \ x^2 - y^2 = 10$$
이다.

5. 다음 중 옳은 것은?



- ① x + a = y + b ② $y^2 + z^2 = a^2$ ③ $a^2 z^2 = b^2$

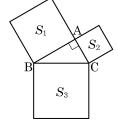
피타고라스 정리에 따라 $z^2 + b^2 = a^2$

따라서 $a^2 - z^2 = b^2$ 이다.

6. 다음 그림과 같은 직사각형 ABCD 에서 점 M 은 선분 AD 의 중점이고, $\overline{\mathrm{BM}}$ = 20, $\overline{\mathrm{BC}}$ = 32 일 때, $\square\mathrm{ABCD}$ 의 넓이를 구하여라.

▶ 답:

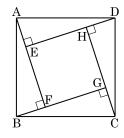
▷ 정답: 384


 $\overline{\mathrm{AM}}=16,\ \triangle\mathrm{ABM}$ 에서 $20^2=16^2+\overline{\mathrm{AB}}^2$ 이므로

 $\overline{AB} = 12$ $\therefore \ \Box \text{ABCD} = 32 \times 12 = 384$

- 7. 다음 그림은 직각삼각형 ABC 에서 각 변을 한 변으로 하는 정사각형을 그린 것이다. $\overline{\mathrm{AB}}$: $\overline{\mathrm{BC}} = 2:3$ 일때, $S_2:S_3$ 는?
 - ① $2: \sqrt{5}$ ② $\sqrt{5}: 3$ ③ 2: 3

4 5:9 **3** 4:5



 $\overline{AB} : \overline{BC} = 2 : 3$ 이므로

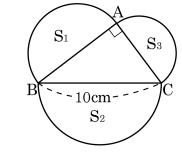
 $S_1: S_3 = 4:9$ $S_1=4a$ 라 하면 $S_3=9a$

 $S_2 = S_3 - S_1 = 5a$ 따라서 $S_2 : S_3 = 5 : 9$ 이다.

8. 다음 그림에서 4 개의 직각삼각형은 모두 합동이고, 사각형 ABCD 와 EFGH 의 넓이는 각각 169 cm², 16 cm²이다. 이 때, 두 사각형의둘레의 길이의 차는?

 \bigcirc 36 cm

. (2)

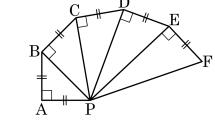

② $32 \,\mathrm{cm}$ ③ $28 \,\mathrm{cm}$

④ 25 cm

⑤ 24 cm

해설 사각형 ABCD 와 EFGH 는 정사각형이므로

사각형 ABCD 의 한 변의 길이는 $\sqrt{169}=13 (\,\mathrm{cm})$ 이고, 사각형 EFGH 의 한 변의 길이는 $\sqrt{16}=4 (\,\mathrm{cm})$ 이다. 따라서 $13\times4-4\times4=36 (\,\mathrm{cm})$ 이다. 9. 그림과 같이 빗변의 길이가 $10 \mathrm{cm}$ 인 $\Delta \mathrm{ABC}$ 의 각 변을 지름으로 하는 반원의 넓이를 각각 S_1 , S_2 , S_3 라고 할 때, $S_1+S_2+S_3$ 의 값을 구하면?


 $425\pi \text{cm}^2$

① $10\pi\mathrm{cm}^2$

- ② $15\pi \text{cm}^2$ ③ $30\pi \text{cm}^2$
- $3 20\pi \text{cm}^2$

 $S_1 + S_3 = S_2$ $S_1 + S_2 + S_3 = 2S_2$ $\therefore 2 \times \pi \times 5^2 \times \frac{1}{2} = 25\pi \text{ (cm}^2\text{)}$ **10.** $\overline{AP} = \overline{AB} = \overline{BC} = \overline{CD} = \overline{DE} = \overline{EF} = 2$ 일 때, 다음 그림에서 길이가 4 가 되는 선분은?

③ PD

 $\overline{\text{PE}}$

 $\odot \overline{PF}$

 $\overline{PB} = \sqrt{8} = 2\sqrt{2}, \ \overline{PC} = \sqrt{12} = 2\sqrt{3}$ $\overline{PD} = \sqrt{16} = 4, \ \overline{PE} = \sqrt{20} = 2\sqrt{5}$ 이므로 길이가 4 인 선분은 \overline{PD} 이다.

 \bigcirc \overline{PC}

 \bigcirc \overline{PB}

해설

- 11. 한 변의 길이가 10 cm 인 정사각형을 그림과 같이 잘랐을 때, x의 값은? (단, $\sqrt{5} = 1.7$)
- 10cm 8cm
- ① 4.7 cm ④ 5.3 cm

해설

- ②4.9 cm ⑤ 5.5 cm
- ③ 5.1 cm
- 0 0.00
- ③ 5.5 cn

자르기 전 정사각형을 그리면 그림과 같다. 잘려진 삼각형 ABC에 피타고 라스 정리를 적용하면 $\overline{AB} = \sqrt{45} =$ $3\sqrt{5} = 5.1 \text{ (cm)}$ 따라서 x = 10 - 5.1 = 4.9 (cm) 이다. **12.** 두 변의 길이가 3, 5 인 직각삼각형에서 나머지 한 변의 길이를 모두 구하여라.

답:답:

н

▷ 정답: 4

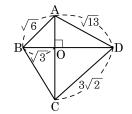
▷ 정답: √34

나머지 한 변의 길이를 a라 하면

해설

i) 5가 가장 긴 변인 경우 5² = a² + 3² ∴ a = 4

ii) a가 가장 긴 변인 경우


 $a^2 = 5^2 + 3^2 = 34 : a = \sqrt{34}$

13. 다음 그림의 $\square ABCD$ 에서 \overline{CO} 의 길이를 구 하여라. (단, $\overline{AC} \bot \overline{BD}$)

(4) $\sqrt{19}$ (5) $2\sqrt{5}$

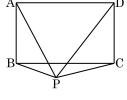
① $2\sqrt{2}$ ② $\sqrt{11}$ ③ $\sqrt{13}$

$$\overline{BC}^2 + \sqrt{13}^2 = \sqrt{6}^2 + (3\sqrt{2})^2$$
$$\therefore \overline{BC} = \sqrt{11}$$

 $\overline{\mathbf{14}}$. $\overline{\mathrm{BC}}=12,\ \overline{\mathrm{AC}}=9,\ \angle{\mathrm{C}}=90^\circ$ 인 직각삼각형 ABC 의 빗변의 중점을 M, 꼭짓점 C 에서 변 AB 에 내린 수선의 발을 H 라 할 때, 삼각형 CMH 의 넓이를 구하여라.

답:

ightharpoonup 정답: $rac{189}{25}$


$$\overline{AB}^2 = \sqrt{9^2 + 12}$$

$$\overline{AB}^2 = \sqrt{9^2 + 12^2} = 15$$
 이므로 $\overline{AM} = \overline{MC} = \frac{15}{2}$

$$15 \times \overline{CH} = 9 \times 12 \text{ 에서 } \overline{CH} = \frac{36}{5}$$
$$\therefore \overline{MH} = \sqrt{\left(\frac{15}{2}\right)^2 - \left(\frac{36}{5}\right)^2} = \frac{21}{10}$$

$$\therefore \triangle CMH = \frac{1}{2} \times \frac{36}{5} \times \frac{21}{10} = \frac{189}{25}$$

15. 다음 그림과 같이 직사각형 ABCD 의 외부에 잡은 한 점 P 와 사각형의 각 꼭짓점을 연결하였다. $\overline{PA^2} = 20$, $\overline{PB^2} = 5$, $\overline{PD^2} = 25$ 일 때, \overline{PC} 의 길이를 구하여라.

답:▷ 정답: √10

해설

다음 그림과 같이 $\triangle AQP$, $\triangle BQP$, $\triangle DRP$, $\triangle CRP$ 이 직각 삼각형이 되도록 점 Q 와 점 R 을 잡고, AB = a, BQ = b, PQ = c, PR = d 라 놓으면 $\triangle AQP$ 에서 $AP^2 = (a+b)^2 + c^2 \cdots$ $\triangle BQP$ 에서 $BP^2 = b^2 + c^2 \cdots$ $\triangle DRP$ 에서 $PC^2 = (a+b)^2 + d^2 \cdots$ $\triangle DRP$ 에서 $PC^2 = b^2 + d^2 \cdots$ $\triangle DRP$ 에서 $PC^2 = b^2 + d^2 \cdots$ $\triangle DRP$ 에서 $PC^2 = b^2 + d^2 \cdots$ $\triangle DRP$ 에서 $PC^2 = b^2 + d^2 \cdots$ $\triangle DRP$ 이 성립함을 알 수 있다. 따라서, $PC^2 = PC^2 = PC^2 = b^2 + b^2 = b^2 + b^2 = b$