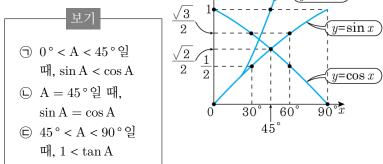

1. 다음 그림의 $\triangle ABC$ 에서 $\angle C=90^\circ$ 일 때, $\sin A+\cos A$ 의 값을 구하여라.



답:

 ▷ 정답:
 \frac{17}{13}

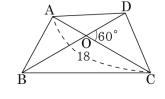
2. 다음 보기 중 옳은 것을 모 두 고르시오.

 $y=\tan x$

▶ 답:

답:

- 답:
- ▷ 정답 : □


▷ 정답: つ

- ▷ 정답: ②

$() \sin 45 ^\circ = \cos 45 ^\circ)$ 고, $0 ^\circ < x < 45 ^\circ 에서 \cos x$ 의 그래프가

- $\sin x$ 의 그래프보다 위에 존재하므로 $0^\circ < A < 45^\circ$ 일 때, $\sin A < \cos A$ 이다. ① $\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$
- ◎ 45° < A < 90°일 때, tan 45° < tan A 이므로 1 < tan A 이다.

다음 등변사다리꼴 ABCD 에서 $\overline{\operatorname{AC}}$ = 3. 18 cm, ∠DOC = 60°일 때, □ABCD의 넓이를 구하여라.

▶ 답: $\underline{\mathrm{cm}^2}$ ightharpoonup 정답: $81\sqrt{3}$ $ext{cm}^2$

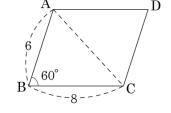
 $\square ABCD$ 는 등변사다리꼴이므로 $\overline{AC} = \overline{BD} = 18 \, \mathrm{cm}$ 이다.

 $\Box ABCD = \frac{1}{2} \times 18 \times 18 \times \sin 60^{\circ}$ $= \frac{1}{2} \times 18 \times 18 \times \frac{\sqrt{3}}{2}$ $= 81 \sqrt{3} \text{ (cm}^2\text{)}$

4. 다음 그림과 같은 직각삼각형 ABC 에서 $\sin A=\frac{4}{5}$ 이고, $\overline{BC}=12$ 라고 한다. 직각삼각형 ABC 의 넓이를 구하여라.

▶ 답:

▷ 정답: 54

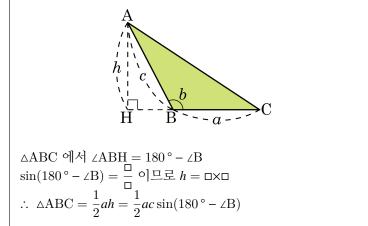

 $\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5}$ 이므로 $\overline{BC} = \overline{AC} \times \sin A$ 이다. ⇒ $12 = \overline{AC} \times \frac{4}{5}$, $\overline{AC} = 15$ 피타고라스 정리에 의해 $\overline{AB} = \sqrt{15^2 - 12^2} = 9$ 이다. 따라서 삼각형 ABC 의 넓이는 $9 \times 12 \times \frac{1}{2} = 54$ 이다.

-2 sin 60° + √3 tan 45° × tan 60° 를 계산한 값은? **5.**

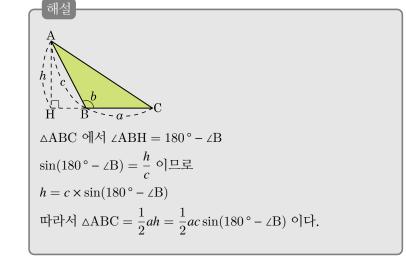
① $3 - \sqrt{3}$ ② $\frac{\sqrt{3}}{2} - 3$ ③ $3 - \frac{\sqrt{3}}{2}$ ④ 0 ⑤ 2

해설 $-2 \times \frac{\sqrt{3}}{2} + \sqrt{3} \times 1 \times \sqrt{3} = -\sqrt{3} + 3$ 이다.

- 6. 다음 그림과 같은 평행사변형 ABCD 에서 대각선AC 의 길이는?
 - ① $3\sqrt{5}$ ② 2
 - $3 2\sqrt{13}$
- ② $2\sqrt{7}$ ④ $3\sqrt{13}$
- (3) $2\sqrt{13}$ (5) $4\sqrt{13}$
- **© 0 110**

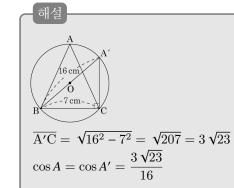

해설 \overline{A} 제서 \overline{BC} 에 내린 수선의 발을 \overline{B} 라고 하면

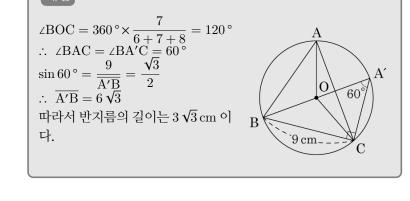
 $\overline{AE}=6\times\sin60^\circ=3\,\sqrt{3}$, $\overline{BE}=6\times\cos60^\circ=3,$ $\overline{CE}=8-3=5$


이다. 따라서 $\triangle AEC$ 에 피타고라스 정리를 적용하면 $\overline{AC} = \sqrt{\left(3\sqrt{3}\right)^2 + 5^2} = \sqrt{52} = 2\sqrt{13}$ 이다.

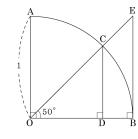
,

다음은 둔각삼각형에서 두 변의 길이와 그 끼인 각의 크기가 주어질 7. 때, 그 삼각형의 넓이를 구하는 과정이다. ㅁ 안에 알맞은 것은?


- ① $\frac{h}{a}$, a, $\tan(180^\circ \angle B)$ ② $\frac{c}{a}$, a, $\sin(180^\circ \angle B)$ ③ $\frac{h}{c}$, c, $\cos(180^\circ \angle B)$ ④ $\frac{c}{h}$, c, $\sin(180^\circ \angle B)$ ⑤ $\frac{h}{c}$, c, $\sin(180^\circ \angle B)$


8. 다음 그림과 같이 $\overline{BC}=7\mathrm{cm}$ 인 ΔABC 에 외접하는 원 O 의 반지름의 길이가 $8\mathrm{cm}$ 일 때, $\cos A$ 의 값은?

- $\frac{3}{16}$


- 다음 그림에서 원 O 위에 세 점 A, B, C 가 있다. 5.0ptAB : 5.0ptBC : 5.0ptCA = 6 : 9. 7:8 이고, $\overline{\mathrm{BC}}=9\,\mathrm{cm}$ 일 때, 원의 반지름 의 길이는?
 - ① $\sqrt{3}$ cm $2\sqrt{3}$ cm
 - $3\sqrt{3}$ cm $4\sqrt{3}$ cm
 - $5\sqrt{3}$ cm

O

9 cm__

10. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 $\angle COD = 50^{\circ}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?

- ① $\sin 50^{\circ} = \overline{\text{CD}}$ ② $\cos 50^{\circ} = \overline{\text{OD}}$

 $3\tan 50^\circ = \frac{\overline{BE}}{\overline{OB}} = \frac{\overline{BE}}{1} = \overline{BE}$

11. 다음 표를 이용하여 $(\cos 55\,^\circ + \sin 56\,^\circ - \tan 54\,^\circ) \times 10000 \ 의 값을 구하여라.$

각도	sin	cos	tan
$54\degree$	0.8090	0.5878	1.3764
$55\degree$	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1,4826

4 262

 \bigcirc 324

 $\cos 55^{\circ} = 0.5736$ $\sin 56^{\circ} = 0.8290$

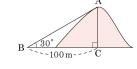
 $\tan 54^{\circ} = 1.3764$: $(\cos 55^{\circ} + \sin 5)$

 $\therefore (\cos 55^{\circ} + \sin 56^{\circ} - \tan 54^{\circ}) \times 10000$

 $= (0.5736 + 0.8290 - 1.3764) \times 10000 = 262$

① 26 ② 97 ③ 170

12. 다음 그림에서 x - y 의 값을 구하면? (단, $\sin 55^\circ = 0.82$, $\cos 55^\circ = 0.57$)



4 8

$$\sin 55^\circ = \frac{x}{8} = 0.82$$
 이므로 $x = 6.56$
 $\cos 55^\circ = \frac{y}{8} = 0.57$ 이므로 $y = 4.56$
따라서, $x - y = 6.56 - 4.56 = 2$ 이다.

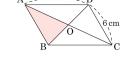
13. 산의 높이를 구하기 위해 다음 그림과 같이 측량하였다. 산의 높이 \overline{AC} 를 구하면?

- ① $\frac{100\sqrt{3}}{2}$ m ② $\frac{100\sqrt{2}}{2}$ m ③ $\frac{100}{3}$ m ④ $\frac{100\sqrt{2}}{3}$ m

$$\frac{\tan 30}{1} = \frac{1}{1}$$

$$\tan 30^{\circ} = \frac{\overline{AC}}{100}$$

$$\therefore \overline{AC} = 100 \tan 30^{\circ} = 100 \times \frac{\sqrt{3}}{3} = \frac{100 \sqrt{3}}{3} \text{ (m)}$$


- 14. 다음 그림은 이등변삼각형이다.∠C = 75°일 때, ΔABC 의 넓이로 알맞은 것은?
 - ① 60
- ② 60.5
- 3 625 64
- **4** 62.5

해설

$$\triangle ABC = \frac{1}{2} \times 16 \times 16 \times \sin(180^{\circ} - 75^{\circ} \times 2)$$
$$= \frac{1}{2} \times 16 \times 16 \times \frac{1}{2} = 64$$

15. 다음 그림과 같은 평행사변형 ABCD 에서 대각선 \overline{AC} , \overline{BD} 의 교점을 O 라고 하자. $\angle BCD = 60^\circ$, $\overline{AD} = 12 \mathrm{cm}$, $\overline{CD} = 6 \mathrm{cm}$ 일 때, $\triangle ABO$ 의 넓이를 구하면?

- $\bigcirc 9 \, \mathrm{cm}^2$
- $2 10 \,\mathrm{cm}^2$
- $3 9\sqrt{2} \,\mathrm{cm}^2$

해설

 $9\sqrt{3} \text{ cm}^2$ $5 10\sqrt{3} \text{ cm}^2$

(□ABCD의 넓이) = $12 \times 6 \times \sin 60^{\circ}$ = $12 \times 6 \times \frac{\sqrt{3}}{2}$ = $36\sqrt{3}$ (cm²) $\therefore \triangle ABO = 36\sqrt{3} \times \frac{1}{4} = 9\sqrt{3}$ (cm²)