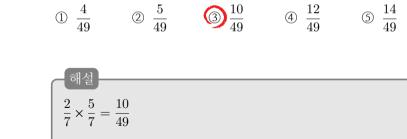
A, B, C 세 사람이 한 줄로 서는 모든 경우의 수는?



③ 5 가지

 $3 \times 2 \times 1 = 6 \ (\mathcal{P})$

주말에 비가 올 확률이 토요일은 $\frac{1}{2}$, 일요일은 $\frac{1}{5}$ 일 때, 토, 일 둘 다 비가 올 확률은?

$\frac{1}{10}$	② $\frac{4}{10}$	$\frac{7}{10}$	$4) \frac{8}{10}$	$\Im \frac{9}{10}$	
해설 $\frac{1}{2} \times \frac{1}{5} =$	$\frac{1}{10}$				

4. 주머니 속에 흰 바둑돌이 3개, 검은 바둑돌이 5개 들어 있다. A가 먼저 한 개 꺼내고, B가 한 개를 꺼낼 때, 흰 바둑돌이 적어도 한 번 나올 확률을 구하면? (단, A 가 꺼낸 것은 다시 넣지 않는다.)

①
$$\frac{9}{14}$$
 ② $\frac{5}{14}$ ③ $\frac{5}{8}$ ④ $\frac{4}{7}$ ⑤ $\frac{1}{8}$

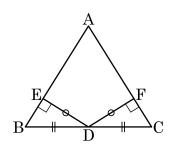
두 번 모두 검은 돌을 꺼낼 확률은
$$\frac{5}{8} \times \frac{4}{7} = \frac{5}{14}$$
 따라서 흰 바둑돌이 적어도 한 번 나올 확률은 $1 - \frac{5}{14} = \frac{9}{14}$

5. 15발을 쏘아서 5발을 명중시키는 포수가 있다. 포수가 2발을 쏘아서 적어도 한 발은 명중시킬 확률은?

①
$$\frac{1}{5}$$
 ② $\frac{3}{5}$ ③ $\frac{1}{9}$ ④ $\frac{5}{9}$ ⑤ $\frac{7}{9}$

해설
$$15 발 중에서 5 발을 명중시키므로 명중시킬 확률은 $\frac{1}{3}$ (적어도 한 발은 명중시킬 확률) = 1 - (모두 명중시키지 못할 확률)
$$\therefore 1 - \frac{2}{3} \times \frac{2}{3} = \frac{5}{9}$$$$

6. $\overline{AB} = \overline{AC}$ 인 이등변삼각형에서 $\overline{BC} = \overline{BD}$ 가 되도록 AC 위에 점 D 를 잡을 때, $\angle x$ 의 값은?


A D TOO C

$$\triangle$$
BCD 에서 $\overline{BC}=\overline{BD}$ 이므로 이등변삼각형 \angle BDC = \angle BCD = 70° \triangle ABC 는 $\overline{AB}=\overline{AC}$ 인 이등변삼각형이므로 \angle ABC = \angle ACB = 70° 따라서 $\angle x + \angle$ ABC + \angle ACB = 180° 이므로 $\angle x + 70^\circ + 70^\circ = 180^\circ$ $\angle x + 140^\circ = 180^\circ$

해설

 $\therefore \angle x = 40^{\circ}$

7. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle FDC = 32^{\circ}$ 일 때, $\angle A$ 의 크기는 ?

$$\triangle EBD \equiv \triangle FCD(RHS합동)$$

 $\angle EBD = \angle FCD = 58^{\circ}$

$$\therefore \angle A = 180^{\circ} - 58^{\circ} \times 2 = 64^{\circ}$$

8. 다음은 ∠XOY 의 이등분선 위의 한 점을 P 라 하고 점 P 에서 OX , OY 에 내린 수선의 발을 각각A, B 라고 할 때, PA = PB 임을 증명하는 과정이다. ¬~□에 들어갈 것으로 옳지 않은 것은?

[가정]∠AOP = (つ),
∠PAO = ∠PBO = 90°
[결론] (○) = (○)
[증명]△POA 와 △POB 에서
∠AOP = (つ) … ⓐ
(②)는 공통 … ⓑ
∠PAO = ∠PBO = 90° … ⓒ
② , ⓑ , ⓒ에 의해서 △POA ≡ △POB ((②) 합동)
∴ (○) = (○)

 $\bigcirc \overline{OP}$

② <u>PA</u>

③ **©**PB

④ ② OP

(5) @SAS

해설

 $\triangle POA \equiv \triangle POB$ 는 $\angle AOP = \angle BOP$, \overline{OP} 는 공통, $\angle PAO = \angle PBO = 90^\circ$ 이므로 RHA 합동이다.

9. 100 원짜리, 500 원짜리 동전 한 개와 주사위 한 개를 동시에 던질 때, 동전 앞면이 한 개만 나오고 주사위의 눈이 홀수가 나올 경우의수는?

③ 10 가지

② 8 가지

6 가지

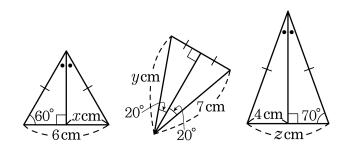
 $2 \times 3 = 6$ (가지)이다.

4) 12 / [<u>^ </u>	(5)	14 /	/ †^	l				
해설									
두 개의	동전을	동시에	던질	때	앞면이	한 개	만 나요	그는 경	[우의

수는 2 가지이고, 이때, 주사위의 눈의 수가 홀수가 나오는 경우의 수는 1, 3, 5 의 3 가지이다. 그러므로 구하는 경우의 수는

10. 0, 4, 5, 7, 8의 숫자가 각각 적힌 구슬이 담긴 주머니에서 구슬 3개를 꺼내 만들 수 있는 세 자리의 정수는 모두 몇 가지인가?

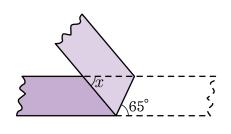
③ 47가지


② 46가지

45가지

(4) 48가지 ⑤ 49가지 해설 백의 자리의 숫자가 될 수 있는 경우는 0 을 제외한 4, 5, 7, 8 의 4 가지이고 싶어 자리의 수자가 될 수 있는 경우는 배어 자리의

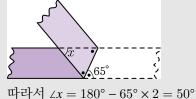
해설 백의 자리의 숫자가 될 수 있는 경우는 0 을 제외한 4, 5, 7, 8 의 4 가지이고, 십의 자리의 숫자가 될 수 있는 경우는 백의 자리의 숫자가 된 수를 제외한 4가지, 일의 자리의 숫자가 될 수 있는 경우는 백, 십의 자리의 숫자가 된 수를 제외한 3 가지이다. 그러 므로 구하는 경우의 수는 $4 \times 4 \times 3 = 48($ 가지)이다.


11. 다음과 같이 모양이 서로 다른 이등변삼각형 3개가 있다. 이때, *x*+*y*+*z* 의 값은 ?

해설
이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분하므로
$$x=3(\mathrm{cm})$$

 $y=7(\mathrm{cm})$
 $z=4+4=8(\mathrm{cm})$

$$\therefore x + y + z = 3 + 7 + 8 = 18$$
(cm)


12. 종이 띠를 다음 그림과 같이 접었을 때, $\angle x$ 의 크기를 구하여라.

- ① 40°
- 50°
- ③ 60° ④ 65° ⑤ 67°

다음 그림과 같이 겹친 부분과 엇각의 크기는 모두 같으므로 이등변삼각형이 된다.

13. 1, 2, 3, 4 의 숫자가 각각 적힌 네 장의 카드가 들어있는 주머니에서 3 장의 카드를 뽑아 세 자리 정수를 만들 때, 작은 것부터 크기순으로 20 번째 수는?

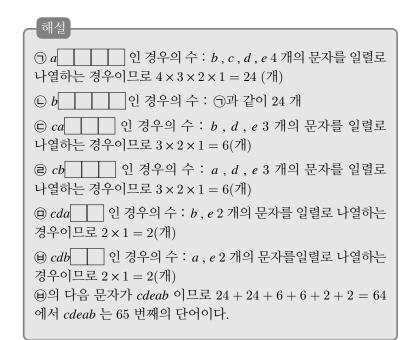
1 413 (3) 423 (5) 432

(4) 431

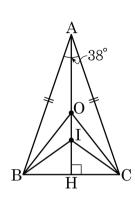
(2) 421

네 장의 카드에서 세 장을 뽑아 만들 수 있는 세 자리 정수는 $4 \times 3 \times 2 = 24$ (가지)이다. 이 때, 20 번째 수는 뒤에서 다섯 번째 수이므로 413 이다.

14. 서로 다른 5 개의 문자 a, b, c, d, e 를 모두 한 번씩만 사용한 단어를 사전식으로 나열할 때, cdeab 는 몇 번째의 단어인지 구하면?


① 63 번째

② 64 번째


③ 65 번째

④ 66 번째

⑤ 67 번째

15. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC 에서 점 O 는 외심, 점 I 는 내심이고, $\angle A = 38^\circ$ 일 때, $\angle OBI$ 의 크기는?

①
$$13^{\circ}$$
 ② $\frac{29}{2}^{\circ}$ ③ $\frac{33}{2}^{\circ}$ ④ 16° ⑤ 17°

해설
$$\angle BOC = 2 \times \angle BAC = 2 \times 38^{\circ} = 76^{\circ}$$

$$\therefore \angle OBC = 52^{\circ}$$

$$\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC = 109^{\circ},$$

$$\angle IBH = \frac{1}{2} \times \angle ABC = \frac{71}{2}$$
°
$$\angle x = \angle OBI = \angle OBC - \angle IBH = 52 \circ -\frac{71}{2} \circ = \frac{33}{2} \circ$$