1. 연립부등식
$$\begin{cases} x-1 > 2x-3 \\ x^2 \le x+2 \end{cases}$$
 의 해는?

①
$$x \le -1$$

②
$$-1 \le x < 1$$

 $-1 \le x < 2$

$$x-1 > 2x-3$$
 $|x| - x > -2$

$$\therefore x < 2 \cdots (7)$$

$$x^2 \le x + 2 \text{ odd } x^2 - x - 2 \le 0$$

2. 두 점 A(a, 1), B(4, -3) 사이의 거리가 4√5일 때, 실수 a의 값들의 합은?

(4) 11

$$\overline{AB} = \sqrt{(4-a)^2 + (-3-1)^2} = 4\sqrt{5}$$

양변을 제곱하여 정리하면
$$a^2 - 8a + 32 = 80, a^2 - 8a - 48 = 0$$
 $(a-12)(a+4) = 0$

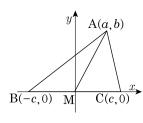
$$∴ a = 12 \, \, \Xi \stackrel{\smile}{\smile} a = -4$$

따라서 구하는 값은 12 - 4 = 8

이라 할 때, $\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$ 을 증명하는 과정이다.

다음은 AABC 에서 변 BC의 중점을 M

3.



위

$$A(a,b)$$
, $B(-c,0)$, $C(c,0)$ 라 하면 $\overline{AB}^2 + \overline{AC}^2 = (a+c)^2 + b^2 + (a-c)^2 + b^2 = ()$ 이고, $\overline{AM}^2 = a^2 + b^2$, $\overline{BM}^2 = c^2$

 $\therefore \overline{AB}^2 + \overline{AC}^2 = (\Gamma)(\overline{AM}^2 + \overline{BM}^2)$ 의 (가), (나), (다)에 알맞은 것을 순서대로 적으면?

따라서 $\overline{AM}^2 + \overline{BM}^2 = (나)$

②
$$2(a^2 + b^2 + c^2), 2(a^2 + b^2 + c^2), 1$$

 $3(a^2+b^2+c^2), a^2+b^2+c^2, 2$

① $a^2 + b^2 + c^2$, $a^2 + b^2 + c^2$, 1

$$(4) \ 2(a^2+b^2+c^2), 2(a^2+b^2+c^2), 2$$

$$(5) \ 3(a^2+b^2+c^2), a^2+b^2+c^2, 3$$

$$\overline{AB}^2 + \overline{AC}^2$$
= {(-c-a)^2 + (0-b)^2} + {(c-a)^2 + (0-b)^2}
= (c^2 + 2ca + a^2 + b^2) + (c^2 - 2ca + a^2 + b^2)
= 2(a^2 + b^2 + c^2)

$$\overline{AM}^2 = a^2 + b^2, \overline{BM}^2 = c^2$$
 이므로
 $\overline{AM}^2 + \overline{BM}^2 = a^2 + b^2 + c^2$
 $\therefore \overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$

4. 두 점 A(3, 2), B(a, b) 를 1 : 3으로 내분하는 점을 P(2, 1) 이라고 할 때, ab 의 값은?

P
$$\left(\frac{1 \cdot a + 3 \cdot 3}{1 + 3}, \frac{1 \cdot b + 3 \cdot 2}{1 + 3}\right)$$
 = P(2, 1) ○□로,
 $\frac{1 \cdot a + 3 \cdot 3}{1 + 3}$ = 2, $a + 9 = 8$ ∴ $a = -1$
 $\frac{1 \cdot b + 3 \cdot 2}{1 + 3}$ = 1, $b + 6 = 4$ ∴ $b = -2$
∴ $ab = 2$

5. 세 점 (0, 2), (3, 8), (a, 3a) 가 일직선 위에 있을 때, 상수 a의 값은?

세 점 A(0, 2), B(3, 8), C(a, 3a)로 놓으면

직선 AB의 기울기:
$$\frac{8-2}{3-0} = 2$$

직선 BC의 기울기: $\frac{3a-8}{a-3}$
한편, 세 점 A, B, C가 일직선 위에 있으므로

직선 AB의 기울기와 직선 BC의 기울기가 서로 같다.

 $\frac{3a-8}{a-3} = 2$, $3a-8 = 2a-6$

∴ $a=2$

6. 다음 <보기> 중 직선 $y = \frac{1}{2}x + 1$ 과 서로 수직인 직선을 모두 고른 것은?

 \bigcirc y = -2(x-1)

해설 서로 수직인 두 직선의 기울기의 곱은
$$-1$$
 이므로 직선 y $\frac{1}{2}x+1$ 과 수직인 직선의 기울기는 -2 이다. 기울기가 -2 인 직선은 \mathbb{C} , \mathbb{C} 이다.

 \bigcirc y = 2x + 1

7. 직선
$$x + ay - 1 = 0$$
이 직선 $3x + by + 1 = 0$ 과 수직이고, 직선 $x - (b+3)y + 1 = 0$ 과 평행일 때, $a^2 + b^2$ 의 값은?

$$x + ay - 1 = 0 \cdot \cdot \cdot \cdot \cdot \bigcirc,$$

$$3x + bx + 1 = 0 \cdot \cdot \cdot \cdot \bigcirc$$

$$x - (b - 3)y + 1 = 0 \cdot \cdot \cdot \cdot \bigcirc$$

$$\bigcirc \bot \bigcirc : 1 \cdot 3 + a \cdot b = 0 \text{ on } A \text{ } ab = -3$$

$$\bigcirc // \bigcirc : \frac{1}{1} = \frac{-(b + 3)}{a} \neq \frac{1}{-1} \text{ on } A \text{ } a + b = -3$$

$$\therefore a^2 + b^2 = (a + b)^2 - 2ab$$

 $= (-3)^2 - 2 \cdot (-3) = 15$

8. 두 점 A(3,2), B(1,4) 를 연결하는 선분의 중점을 지나고 2x+y-1=0에 수직인 직선을 l 이라 할 때, 다음 중 직선 l 위에 있는 점은?

①
$$\left(-4, \frac{1}{2}\right)$$
 ② $\left(-6, -\frac{3}{2}\right)$ ③ $\left(0, 2\right)$ ④ $\left(1, 1\right)$ ③ $\left(-1, \frac{1}{2}\right)$

해설
두 점
$$A(3,2)$$
, $B(1,4)$ 의 중점 M 의 좌표는
 $(2,3)$ 이고, 직선 $2x+y-1=0$ 에 수직인

(2,3)이고, 직선2x + y - 1 = 0 에 수직인 직선의 기울기 $m \in (-2) \cdot m = -1$ 에서 $m = \frac{1}{2}$

이 때, 구하는 직선 l 의 방정식은 $y = \frac{1}{2}(x-2) + 3$ $\therefore y = \frac{1}{2}x + 2$ 따라서, 이 직선 위의 점은 (0,2)이다

. 연립방정식 $\begin{cases} x+y=1\\ y+z=3 \end{cases} = 만족하는 x, y, z를 구할 때, x^2+y^2+z^2\\ z+x=4 \end{cases}$

의 값을 구하여라.

장답: 10
$$\begin{cases} x + y = 1 \cdots \bigcirc \\ y + z = 3 \cdots \bigcirc \\ z + x = 4 \cdots \bigcirc \end{aligned}$$

$$(3) + (3) + (3) + (3) \Rightarrow 2(x + y + z) = 8$$

$$(3) + (4) + (4) \Rightarrow 2(x + y + z) = 8$$

$$(4) + (4) + (4) \Rightarrow 2(x + y + z) = 8$$

$$(5) + (4) + (4) \Rightarrow 2(x + y + z) = 8$$

$$(6) + (4) + (4) \Rightarrow 2(x + y + z) = 8$$

$$(7) + (4) + (4) \Rightarrow 2(x + y + z) = 8$$

$$(8) - (1) \Rightarrow z = 3$$

$$(8) - (1) \Rightarrow z = 3$$

$$(8) - (1) \Rightarrow z = 1$$

$$(9) - (1) \Rightarrow z = 1$$

$$(9) - (1) \Rightarrow z = 1$$

$$(1) - (2) \Rightarrow z = 1$$

$$(2) - (3) \Rightarrow z = 1$$

$$(3) - (4) \Rightarrow z = 1$$

$$(4) + (4) \Rightarrow z = 1$$

$$(4) + (4) \Rightarrow z = 1$$

$$(5) + (4) \Rightarrow z = 1$$

$$(6) + (4) \Rightarrow z = 1$$

$$(7) + (2) \Rightarrow z = 1$$

$$(8) + (2) \Rightarrow z = 1$$

$$(9) + (2) \Rightarrow z = 1$$

$$(1) + (3) \Rightarrow z = 1$$

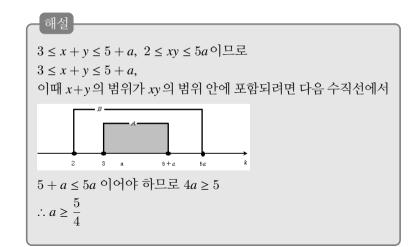
$$(2) + (4) \Rightarrow z = 1$$

$$(3) + (4) \Rightarrow z = 1$$

$$(4) + (4) \Rightarrow z =$$

10. $2 \le x \le 5$, $1 \le y \le a$ 일 때, x + y의 범위가 xy의 범위 안에 포함되기 위한 실수 a의 최솟값은? (단, $a \ge 1$)

②
$$\frac{8}{7}$$
 ③ $\frac{7}{6}$



11. 이차부등식 $ax^2 + 4x + a < 0$ 이 임의의 실수 x에 대하여 성립할 때. 상수 a의 값의 범위는?

①
$$a < -2$$
 ④ $a < 4$

(2) a < 0(5) a < 8 (3) a < 2

$$ax^2 + 4x + a < 0$$
이 임의의 실수 x 에 대하여 성립하려면 i) $a < 0$ ii) $ax^2 + 4x + a = 0$ 의 판별식을 D 라 할 때,

$$\frac{D}{4} = 2^2 - a^2 < 0$$

$$a^2 - 4 > 0, (a+2)(a-2) > 0$$

$$\therefore a < -2 \stackrel{\leftarrow}{\to} a > 2$$

i), ii)의 공통 범위를 구하면 *a* < −2

- **12.** $x^2 2ax + 2a + 3 < 3$ 을 만족하는 x가 없도록 하는 정수 a의 개수는?
 - ① 1개 ② 3개 ③ 5개 ④ 7개 ⑤ 9개

- 해설

모든 실수
$$x$$
에 대하여
$$x^2 - 2ax + 2a + 3 \ge 0$$
이어야 한다.
$$\frac{D}{A} = a^2 - (2a+3) \le 0, \ (a-3)(a+1) \le 0$$

 $x^2 - 2ax + 2a + 3 < 0$ 의 해가 존재하지 않으려면

13. a, b가 유리수일 때, $x = 1 + \sqrt{2}$ 가 $x^3 - 3x^2 + ax + b = 0$ 의 근이 되다 이 때 $a^2 + b^2$ 의 값을 구하여라

▷ 정답: 2

유리계수 방정식이므로 $1 + \sqrt{2}$ 가 근이면 $1 - \sqrt{2}$ 도 근이다. 주어진 방정식의 세 근을 $1+\sqrt{2}$, $1-\sqrt{2}$. α 라 하면

$$(1 + \sqrt{2}) + (1 - \sqrt{2}) + \alpha = 3 \quad \dots \quad \bigcirc$$

 $(1 + \sqrt{2})(1 - \sqrt{2}) + \alpha(1 + \sqrt{2}) + \alpha(1 - \sqrt{2}) = a \cdot \dots \quad \bigcirc$

 $\alpha(1+\sqrt{2})(1-\sqrt{2})=-b$ ······©

①, ①, ⓒ을 연립하여 풀면
$$a=1, b=1$$

- **14.** $2xy = x^2$, $2xy = y^2 y$ 를 동시에 만족하는 (x, y)의 개수는?
 - ① 0개 ② 1개 ③ 2개 <mark>④</mark> 3개 ⑤ 4개

해설
$$\begin{cases} 2xy = x^2 & \cdots \\ 2xy = y^2 - y & \cdots \\ 0 \end{cases}$$
라 하면 ①에서 $x = 0$ 또는 $x = 2y$
(i) $x = 0$ 일 때;
©에서 $y^2 - y = 0$
 $\therefore y = 0, 1$
(ii) $x = 2y$ 일 때;
©에서 $4y^2 = y^2 - y$
 $\therefore y = 0, -\frac{1}{3}$

 $\therefore = (0, 0), (0, 1), \left(-\frac{2}{3}, -\frac{1}{3}\right)$

15. 다음 방정식을 만족하는 실수 x, y의 합을 구하여라.

$$(x^2+1)(y^2+4) = 8xy$$

- 답:
- ▶ 답:
- ➢ 정답: -3
- ▷ 정답: 3

해설

이것을 완전제곱식의 꼴로 변형하면 $(x^2y^2 - 4xy + 4) + (4x^24xy + y^2) = 0$

이 때, x, y가 실수이므로 xy - 2, 2x - y도 실수이다. $\therefore xy - 2 = 0 \quad \cdots$ \bigcirc .

 $\therefore xy - 2 \equiv 0 \quad \cdots \quad 0$

2x - y = 0 $\cdots \bigcirc$

①에서 y = 2x이고, 이것을 ①에 대입하면 $x^2 = 1$ 따라서, x = 1일 때 y = 2, x = -1일 때 y = -2

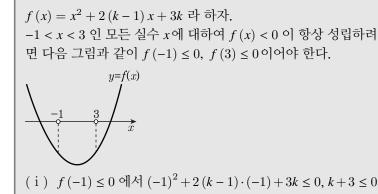
그러므로 x, y의 값은 $x = \pm 1$, $y = \pm 2$ (복부호 동순)

 $(x^2+1)(y^2+4) = 8xy$

따라서 x, y의 합은 -3, 3

16. -1 < x < 3인 모든 실수 x에 대하여 이차부등식 $x^2 + 2(k-1)x + 3k < 0$ 이 항상 성립하도록 하는 실수 k의 최댓값을 구하여라.

➢ 정답: -3



따라서, 실수 k의 최댓값은 -3이다.

17. 삼각형 ABC 의 무게중심의 좌표가 G(2, -1) 이고 세 변 AB, BC, CA 를 2:1 로 내분하는 점이 각각 P(a,3), Q(-2,-2), R(5,b) 일 때, a+b 의 값을 구하여라.

해설
삼각형 ABC 의 무게중심과 삼각형 PQR 의 무게중심은 일치한
다.
삼각형 PQR 의 무게중심의 좌표는
$$\left(\frac{a-2+5}{3},\frac{3-2+b}{3}\right)$$
 이므로

$$\frac{a+3}{3} = 2 \text{ 에서 } a = 3$$

또 $\frac{1+b}{3} = -1 \text{ 에서 } b = -4$

$$\therefore a+b=-1$$

18. 두 직선 3x + 4y + 4 = 0, 3x + 4y + 2 = 0사이의 거리는 얼마인가?

 $2\frac{1}{2}$

.

3 1

2

⑤ 3

해설

$$\therefore \frac{|3 \cdot 0 + 4 \cdot (-1) + 2|}{\sqrt{3^2 + 4^2}} = \frac{2}{5}$$

19. x, y에 관한 연립방정식 $\begin{cases} kx + (1-k)y = 2k+1 \\ akx + (k+1)y = b+4k \end{cases}$ 가 k의 값에 관계없이 일정한 근을 갖도

록 상수 a,b의 값을 정할 때, a+b의 값은?

①
$$-1$$
 ② 0 ③ 1 ④ 2 ⑤ 3

(3a - 3)k + (1 - b) = 0

 $\therefore a = 1, b = 1$ $\therefore a + b = 2$

20. 두 이차방정식 $x^2 + kx + 3 = 0$, $x^2 + x + 3k = 0$ 이 공통인 실근 α 를 가질 때, $\alpha - k$ 의 값을 구하여라.

 $\alpha^2 + k\alpha + 3 = 0 \quad \cdots \quad \bigcirc$ $\alpha^2 + \alpha + 3k = 0 \quad \cdots \quad \bigcirc$

 $(k-1)(\alpha-3) = 0$

(i)
$$k = 1$$
인 경우 두 이차방정식이 $x^2 + x + 3 = 0$ 으로 일치하여 공통근은 갖지만 실근이 아니므로 부적합하다.

(ii)
$$\alpha = 3$$
인 경우 $9 + 3k + 3 = 0$ ∴ $k = -4$
∴ $\alpha - k = 7$

21. 부등식
$$[x-1]^2 + 3[x] - 3 < 0$$
의 해는? (단, $[x]$ 는 x 보다 크지 않은 최대의 정수이다.)

①
$$-2 \le x < 1$$
 ② $-2 \le x < 0$ ③ $-1 \le x < 1$ ④ $-1 < x < 0$ ⑤ $0 < x < 2$

$$x-1$$

 $-1 \le x < 1$

$$x-1=A$$
라 하면 $x=A+1$
 $\therefore [A]^2+3[A+1]-3=[A]^2+3[A]+3-3<0$
 $[A]([A]+3)<0$ $\therefore -3<[A]<0$
 $-2\leq A<0$ $\therefore -2\leq x-1<0$ 이므로