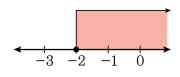
1. 연립방정식 $\begin{cases} 2x + y = 16 \\ x + 2y = 13 + a \end{cases}$ 을 만족하는 x 와 y 의 값의 비가 3: 2 일 때. a 의 값은?

① -1 ② 0 ③ 1 ④ 2 ⑤ 3

해설
$$x : y = 3 : 2 이므로 2x = 3y 를 2x + y = 16 에 대입하면 3y + y = 16,$$
 따라서 $x = 6$, $y = 4$, 이것을 $x + 2y = 13 + a$ 에 대입하면 $a = 1$ 이다.

2. 다음 두 연립방정식의 해가 같을 때, ab 의 값은?

$$\begin{cases} ax + by = -11 \\ x - y = 3 \end{cases}, \begin{cases} x - 2y = 8 \\ ax - by = -1 \end{cases}$$


해설
$$\begin{cases} x-y=3\\ x-2y=8 \end{cases} \Rightarrow \text{ 연립하여 풀면 } x=-2,\ y=-5 \text{가 나오고, o}$$
 값을 나머지 두 식에 대입하여 풀면 $a=3,\ b=1$ 이 나온다. 따라서 $ab=3$ 이다.

• $-1 < x \le 2$ 일 때, $a \le -2x + 1 < b$ 이면 a + b 의 값은?

$$\bigcirc 1 - 2 \qquad \bigcirc 2 - 1 \qquad \bigcirc 3 \bigcirc 0 \qquad \bigcirc 4 \bigcirc 1 \qquad \bigcirc 5 \bigcirc 2$$

$$-1 < x \le 2$$
 의 각각의 변에 -2 를 곱하면 $-4 \le -2x < 2$, 각각의 변에 1 을 더하면 $-3 \le -2x + 1 < 3$ 이다.
따라서 $a = -3$, $b = 3$ 이므로 $(-3) + 3 = 0$ 이다.

4. 다음 그림의 수직선의 빗금 친 부분을 해로 가지는 일차부등식은?

(3) $2x + 1 \le -3$

(1) 3x - 2 > 1

(4) $2x - 1 \le -1$

- ② 3x 1 > 2
- $\bigcirc 2x + 2 \ge -2$

빗금 친 부분: $x \ge -2$ ① $3x > 3 \rightarrow x > 1$

- ② $3x > 3 \rightarrow x > 1$ ③ $2x \le -4 \rightarrow x \le -2$
- $\textcircled{4} \ 2x \le 0 \ \rightarrow \ x \le 0$

- 5. 연속하는 세 자연수의 합이 10 이상 20 미만이고, 큰 수의 3 배는 작은 두 수의 합보다 10 이상 클 때, 세 수 중 가장 큰 수는?
 - ① 3 ② 4 ③ 5 ④ 6

연속하는 세 자연수를
$$x-1$$
, x , $x+1$ 이라고 하면
$$\begin{cases} 10 \leq (x-1) + x + (x+1) < 20 & \cdots \\ (x-1) + x \leq 3(x+1) - 10 & \cdots \end{cases}$$

① 에서
$$10 \le 3x < 20$$
, $\therefore \frac{10}{3} \le x < \frac{20}{3}$
② 에서 $2x - 1 \le 3x - 7$, $-x \le -6$ $\therefore x \ge 6$
 $6 \le x < \frac{20}{3}$ 이므로 이를 만족하는 자연수는 6 이고, 세 자연수는 5 . 6 . 7 이다.

따라서, 세 수 중 가장 큰 수는 7 이다.

6.
$$x$$
에 관한 부등식 $2-\frac{2ax+5}{3}<-\frac{x}{2}+3$ 의 해가 $3\left(\frac{2x}{3}+1\right)>5x-2$ 의 해와 같을 때, a 의 값을 구하면?

①
$$-\frac{21}{4}$$
 ② $-\frac{22}{4}$ ③ $-\frac{23}{4}$ ④ $-\frac{31}{20}$ ⑤ $-\frac{33}{20}$

해설
$$3\left(\frac{2x}{3}+1\right) > 5x - 2 에서 2x + 3 > 5x - 2$$

$$-3x > -5$$

$$x < \frac{5}{3}$$

$$2 - \frac{2ax+5}{3} < -\frac{x}{2} + 3 의 양변에 6을 곱하면$$

$$12 - 2(2ax+5) < -3x + 18$$

$$12 - 4ax - 10 < -3x + 18$$

$$(-4a+3)x < 16$$
두 부등식의 해가 같으므로
$$-4a+3 > 0 의코 해는 x < \frac{16}{-4a+3}$$

$$\frac{16}{-4a+3} = \frac{5}{3}$$

$$\therefore a = -\frac{33}{20}$$

7. 다음 연립부등식 $\begin{cases} 0.3x + 1.2 > 0.5x \\ \frac{2}{3}x - \frac{1}{2} < \frac{3}{4}x \end{cases}$ 을 만족하는 모든 정수 x 의 합은?

①
$$6$$
 ② 3 ③ 1 ④ 0 ⑤ -2

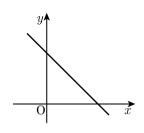
i)
$$0.3x + 1.2 > 0.5x$$
 의 양변에 10 을 곱하면 $3x + 12 > 5x$
 $x < 6$
ii) $\frac{2}{3}x - \frac{1}{2} < \frac{3}{4}x$ 의 양변에 12 를 곱하면 $8x - 6 < 9x$
 $x > -6$
∴ $-6 < x < 6$
만족하는 정수는 -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 , 3 , 4 , 5 이고 이들의 합은 0 이다.

8. 연립부등식 $\begin{cases} 15x - 4 < 6x + 5 \\ 2x + a \le 3x - 2 \end{cases}$ 을 동시에 만족하는 정수의 개수가 3개일 때, 상수 a의 값의 범위는?

①
$$-5 \le a < -4$$
 ② $-5 < a \le -4$ ③ $-2 \le a < -1$

해설
$$15x-4<6x+5, x<1$$

$$2x+a \le 3x-2, x \ge a+2$$
 연립부등식의 해는 $a+2 \le x < 1$ 이고 만족하는 정수가 3개이기 위해서
$$-3 < a+2 \le -2$$
 $\therefore -5 < a < -4$


9. 역에서 기차를 기다리는 데 40 분의 여유가 있어서 책을 사오려고 한다. 시속 3 km로 걸어가서 10 분동안 책을 사고, 시속 4 km로 돌아온다면 역에서 몇 km이내의 서점까지 갔다 올 수 있는가?

①
$$\frac{4}{3}$$
 km ② $\frac{5}{4}$ km ③ $\frac{4}{5}$ km ④ $\frac{6}{7}$ km ⑤ $\frac{7}{8}$ km

역에서 서점까지의 거리를
$$x \text{ km}$$
 라고 하면
$$\frac{x}{3} + \frac{10}{60} + \frac{x}{4} \le \frac{40}{60}$$
$$\frac{x}{3} + \frac{1}{6} + \frac{x}{4} \le \frac{4}{6}$$
$$4x + 2 + 3x \le 8$$
$$7x \le 6$$

 $\therefore x \leq \frac{6}{7}$

따라서, 역에서 $\frac{6}{7}$ km 이내의 서점까지 갔다 올 수 있다.

(3) a > 0, b < 0

①
$$a < 0, b > 0$$

④ $a = 0, b > 0$

②
$$a > 0, b > 0$$

③ $a > 0, b = 0$

$$x + ay + b = 0 = 0 = 0$$
는 $y = -\frac{1}{a}x - \frac{b}{a}$ 이므로 $-\frac{1}{a} < 0$, $-\frac{b}{a} > 0$ 이다.

따라서 *a* > 0, *b* < 0 이다.

11. 다음 중 일차함수인 것을 모두 고르면?

①
$$y = 2x(x-1)$$

$$y = 2x(x-1)$$

$$\bigcirc -y = 2(x+y) + 1$$

⑤
$$x = 2y + x + 1$$

$$\bigcirc$$
 애질 \bigcirc ① $y = 2x^2 - 2x$: 이차함수

②
$$y = \frac{1}{x} + 3$$
: 분수함수

⑤
$$y = -\frac{1}{2}$$
 : 상수함수

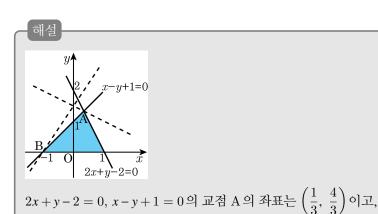
 $y = \frac{x}{5} - 6$

12. 다음 그림과 같은 직사각형 ABCD에서 점 P 가 점 B에서 점 C까지 매초 4cm의 속력으로 움직이고 있다. 점 P가 x초 동안 움직였을 50cm 때, □APCD의 넓이가 2500cm²가 되는 x의 값은?

③ 20

사각형 ABCD의 넓이는 전체 직사각형 ABCD에서 ΔABP의

(4) 25


(5) 30

(1) 10

넓이를 빼면 된다. 따라서 x초 후 APCD의 넓이를 ycm²라고 하면 y = 4000 - 100x가 성립한다. 따라서 4000 - 100x = 2500이므로 x = 15이다. **13.** 직선 $y = mx + \frac{3}{2}$ 이 세 직선 2x + y - 2 = 0, x - y + 1 = 0, y = 0으로 둘러싸인 삼각형의 둘레와 만나지 않는 m의 범위를 구하면?

①
$$m < -\frac{1}{2} \stackrel{\text{H}}{=} m > \frac{3}{2}$$
 ② $m > \frac{3}{2}$ ③ $m < -\frac{1}{2}$ ④ $-\frac{1}{2} < m < \frac{3}{2}$ ⑤ $m < \frac{3}{2}$

$$y = mx + \frac{3}{2}$$
가 점 A를 지날 때 $m = -\frac{1}{2}$
$$y = mx + \frac{3}{2}$$
가 점 B를 지날 때 $m = \frac{3}{2}$
$$\therefore -\frac{1}{2} < m < \frac{3}{2}$$

14. 연립방정식
$$\begin{cases} 0.2x + 0.1y = 0.7 \\ 0.\dot{x} - 0.0\dot{y} = 0.1\dot{8} \end{cases}$$
 을 풀면?

①
$$x = -2, y = 3$$

③
$$x = 2, y = -3$$
 ④ $x = -2, y = -3$

⑤
$$x = 3, y = 2$$

[이 전]
$$\begin{cases} 0.2x + 0.1y = 0.7 \\ 0.\dot{x} - 0.0\dot{y} = 0.1\dot{8} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{17}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{1}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{1}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{1}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{1}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{90}y = \frac{1}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{9}x - \frac{1}{90} \end{cases} \Rightarrow \begin{cases} 2x + y = 7 \\ \frac{1}{9}x - \frac{1}{9}x - \frac{1}{9}x - \frac{1}{9}x - \frac{1}{9$$

(2) x = 2, y = 3

15. 온도를 측정하는 단위인 섭씨(°C)와 화씨(°F)사이에는 °F = $\frac{9}{5}$ °C + 32의 관계식이 성립한다. 섭씨로 나타냈을 때, 화씨로 나타냈을 때보다 8°C높을 때는 섭씨 몇 도일 때인가?

$$4 -40 \,^{\circ}\text{C}$$
 $5 -35 \,^{\circ}\text{C}$

화씨를
$$y$$
, 섭씨를 x 라 하면 관계식은 $y = \frac{9}{5}x + 32$ 이다.

 $y = \frac{9}{5}x + 32$ 의 그래프와 y = x - 8의 교점이다.

따라서 대입하면 $x - 8 = \frac{9}{5}x + 32$ 이므로

$$\frac{4}{5}x = -40$$
 : $x = -50$

따라서 섭씨 -50°C일 때, 화씨로 나타냈을 때보다 8°C만큼

높다.