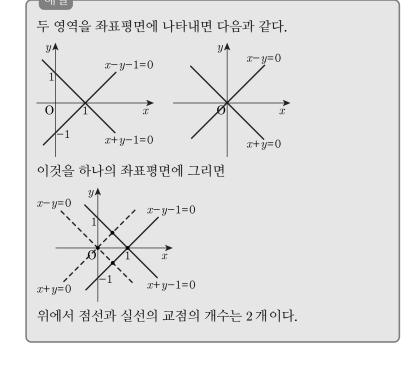
- 1. 삼차방정식 $x^3 + x^2 (k+2)x + k = 0$ 이 중근을 가질 때, k의 값을 구하면?
 - ① -1 ② 0 ③ -1, 3 ④ 0, 3 ⑤ 3

 $x^3 + x^2 - (k+2)x + k = 0$, $(x-1)(x^2 + 2x - k) = 0$ 이 중간 필 가지려면 i) x = 1이 중근일 때,

- 1 + 2 k = 0
- $\therefore k = 3$
- ii) $x^2 + 2x k = 0$ 이 중근이면
- $\frac{D}{4} = 1 + k = 0$
- $\therefore k = -1$


- **2.** 실계수 삼차방정식 $x^3 + ax^2 + bx + 2 = 0$ 의 한 근이 1 + i 일 때, a + b의 값은?
- ① -3 ② -2 ③ -1 ④ 1 ⑤ 3

해설 세 근을 $1+i, 1-i, \gamma$ 라 하면

 $(1+i)(1-i)\gamma = -2, \ 2\gamma = -2$

- $\therefore \gamma = -1$ $(1+i) + (1-i) + \gamma = -a = 1$
- $\therefore a = -1$ $(1+i)(1-i) + (1-i)\gamma + \gamma(1+i) = 0, \ b=0$
- $\therefore a+b=-1$

- **3.** 좌표평면에서 두 영역 (x+y-1)(x-y-1)=0, $x^2-y^2=0$ 을 동시에 만족하는 (x, y)의 개수는?
 - ① 무한히 많다. ② 0개 ③ 1개
 - (4) 2 TH (5) 4 TH

4. 이차방정식 $2x^2 - 5x + k = 0$ 의 근이 유리수가 되는 k의 최대 정수값을 구하여라.

▶ 답: ▷ 정답: 3

근이 유리수이므로, 판별식D ≥ 0 이어야 한다.

 $D=25-8k\geq 0$ 곧, $k\leq \frac{25}{8}$ 이어야 한다.

k는 정수이므로 $k=3,\ 2,\ 1,\ \cdots$ 이고, 이 중 $D\geq 0$ 조건을 만족하는 최대 정수는 k=3 이다.

- 5. x 에 대한 이차부등식 $x^2 + ax + b > 0$ 의 해가 x < 1 또는 x > 4 일 때 상수 a + b 의 값을 구하여라.
 - ▶ 답:

▷ 정답: -1

7 02.

해설

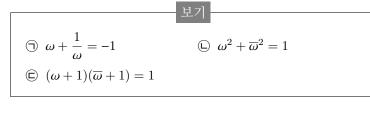
 $x^2 + ax + b > 0$ 의 해가 x < 1 또는 x > 4 이려면

(x-1)(x-4) > 0 에서 $x^2 - 5x + 4 > 0$ 이므로 a = -5, b = 4 따라서 a + b = -1

0 < x < 1 인 모든 x 에 대하여 항상 $x^2 - 3 \le (a - 1)x$ 가 성립할 때, 6. 실수의 상수 a 의 범위를 구하면?

① a = -1 ② a > -1

 $3a \ge -1$


④ a < -1 ⑤ $a \le -1$

 $f(x) = x^2 - (a-1)x - 3$ 이라 두어,

해설

0 < x < 1 에서 $f(x) \le 0$ 되도록 하자. $f(0) \le 0$ 그리고 $f(1) \le 0$ 이면 된다. 그런데, f(0) = -3 이므로 $f(1) = 1 - (a - 1) - 3 \le 0$ 에서 $a \ge -1$

7. 삼차방정식 $x^3=1$ 의 한 허근을 ω 라 할 때, 다음 <보기>에서 옳은 것을 모두 고른 것은? (단, ω 는 ω 의 켤레복소수이다.)

③ □, □

 $\textcircled{3} \ \bigcirc, \ \boxdot) \qquad \qquad \textcircled{3} \ \bigcirc, \ \boxdot)$

2 7, 0

1) 🦳

해설

8. A, B 두 사람이 어떤 물건을 3 개월 할부로 공동 구입하였다. 첫달에 $A,\ B$ 중 한 사람이 다른 사람보다 돈을 많이 지불하였기 때문에 두 번째 달부터는 전달에 많이 지불한 사람은 전달보다 20 %적은 금액을 지불하고, 적게 지불한 사람은 전 달보다 3000원 많은 금액을 지불하 기로 하였다. 금액을 모두 지불하고보니 A, B는 전체 액수의 반씩을 부담하게 되었다. 이 물건을 사는 데 든 비용은 전부 얼마인가? (단, 두 번째 달의 B의 지불금액은 A의 지불금액보다 6000 원이 많았다.)

④ 162000 원

⑤ 570000원

③ 81000원

첫달에 A, B가 지불한 금액을 각각 x원, y원이라 하면 각자가

지불한 금액의 총합은 다음과 같다. A: x + 0.8x + (0.8x + 3000)B: y + (y + 3000) + 0.8(y + 3000)따라서 x + 0.8x + (0.8x + 3000) = y + (y + 3000) + 0.8(y + 2000)

 $3000) \cdot \cdot \cdot \cdot \cdot \bigcirc$

 $0.8x + 6000 = y + 3000 \cdots$ 또, ①, \bigcirc 에서 x = 30000 , y = 27000

따라서, A가 지불한 금액은 $30000 + 0.8 \times 30000 + 0.8 \times 30000 + 3000 = 81000$

① 27000원 ② 30000원

그런데 물건을 사는 데 든 총 비용은 한 사람이 지불한 금액의 2 배이다. ∴ (지불한 총 금액)= 81000 × 2 = 162000(원)

9. 두 부등식 $A: \frac{5x+1}{6} < 1, B: 3x-8 < -x$ 에 대하여 A에서 B를 제외한 부분을 만족하는 자연수의 개수를 구하여라.

개

따라서 A에서 B를 제외한 부분을 만족하는 자연수의 개수는 0

▶ 답:

▷ 정답: 0<u>개</u>

 $A: \frac{5x+1}{6} < 1$ B:3x-8<-x

 $\therefore x < 2$

개이다.

10. 연립부등식 $\begin{cases} 6 < -x + 2 < -2x - 1 \\ |x| < a \end{cases}$ 의 해가 없을 때, 양수 a 의 값의 범위를 구하여라.

4 $0 < a \le 4$ 5 0 < a < 4

① $3 < a \le 4$ ② $0 < a \le 3$ ③ 0 < a < 3

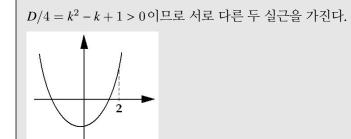
 $\begin{cases} 6 < -x + 2 < -2x - 1 \cdots ① \\ |x| < a \cdots @ \end{cases}$ 에서 6 < -x + 2 의 해는 x < -4 -x + 2 < -2x - 1 의 해는 x < -3 $\therefore x < -4$ @ 에서 $|x| < a \vdash -a < x < a \vdash$ 연립부등식의 해가 없으려면 $-a \ge -4$, $a \le 4$, 그런데 $a \vdash$ 양수이므로 a의 값의 범위는 $0 < a \le 4$ 이다.

11. 일의 자리 숫자가 십의 자리 숫자보다 5 만큼 큰 두 자리 자연수가 있다. 이 자연수가 27 보다 크고 38 이하라고 한다. 두 자리 자연수를 구하여라.

답:

➢ 정답: 38

십의 자리 숫자를 a 라 하면 일의 자리 숫자는 a+5 이다. 즉 두 자리 자연수는 10a + (a + 5) = 11a + 5 이다. $27 < 11a + 5 \le 38$


 $22<11a\leq 33$

 $2 < a \le 3$

a는 자연수이므로 3이다. 따라서 두 자리 자연수는 38이다.

- **12.** x > 2인 모든 실수 x에 대하여 $x^2 2kx + k 1 > 0$ 을 성립하게 하는 실수 k의 최댓값은?
 - ① -1 ② 0 ③1 ④ 2 ⑤ 3

해설

하고 $f(2) \ge 0$ 의 두 조건을 모두 만족해야 한다. 대칭축 조건에서 $k < 2 \cdots$

문제의 조건을 만족하기 위해서는 대칭축이 2보다 왼쪽에 있어야

 $f(2) = 3 - 3k \ge 0 \text{ odd } k \le 1 \text{ } \cdots \cdot \square$

k의 최댓값은 1이다.

13. x에 대한 연립부등식 $\begin{cases} (x+a)(x-4) < 0 \\ (x-a)(x-3) > 0 \end{cases}$ 의 해가 3 < x < 4가 되도록 하는 실수 a 의 값의 최댓값과 최솟값을 각각 M,m 이라 할 때,

M − *m* 의 값을 구하면?

①3

② -3 ③ 4 ④ -4 ⑤ -7

 $(x+a)(x-4) < 0 \cdot \cdot \cdot \cdot \cdot \bigcirc$ $(x-a)(x-3) > 0 \cdot \cdot \cdot \cdot \subseteq$

①, ⓒ의 공통해가 3 < x < 4이므로 -a < 4, a < 3 이어야 한다.

∴ ①의 해는 -a < x < 4······ⓒ

 \bigcirc 의 해는 x < a 또는 $x > 3 \cdot \cdot \cdot \cdot \cdot$ \bigcirc

©, @의 공통 범위가 3 < x < 4 이려면

 $-a \le 3, \ a \le -a$ $\therefore -3 \le a \le 0$

 $\therefore M = 0, \ m = -3 \therefore M - m = 3$

- 14. $f(x) = x^3 p, g(x) = x^3 2x$ 에 대하여 방정식 f(x) = 0의 세 근을 α , β , γ 라고 할 때, $g(\alpha)g(\beta)g(\gamma)$ 의 값을 p로 바르게 나타낸 것은?
 - ① p^3
- ② $-p^3 + 2p$ ③ $-3p^3$

 $x^3 - p = 0$ 의 세 근을 α , β , γ 라 하면 $\alpha^3 - p = 0, \ \beta^3 - p = 0, \ \gamma^3 - p = 0$ $\alpha + \beta + \gamma = 0$, $\alpha\beta + \beta\gamma + \gamma\alpha = 0$, $\alpha \beta \gamma = p$ 이 성립한다.

 $g(\alpha)b(\beta)g(\gamma) = (\alpha^3 - 2\alpha)(\beta^3 - 2\beta)(\gamma^3 - 2\gamma) = (p - 2\alpha)(p -$

이 때,

 $(2\beta)(p-2\gamma)$

 $= p^3 - 2(\alpha + \beta + \gamma)p^2 + 4(\alpha\beta + \beta\gamma + \gamma\alpha)p - 8\alpha\beta\gamma = p^3 - 8p$

15. $x^4 - bx - 3 = 0$ 의 네 근을 a,b,c,d라고 할 때, $\frac{a+b+c}{d^2}, \frac{a+b+d}{c^2}, \frac{a+c+d}{b^2}, \frac{b+c+d}{a^2}$ 를 네 근으로 하는 방 정식은?

- ① $3x^4 + bx + 2 = 0$ ② $3x^4 bx + 1 = 0$
- $3x^4 + bx^3 - 2 = 0$

근과 계수와의 관계에서 $x^4 - bx - 3 = 0$ 의 네 근이 a, b, c, d이므로

a + b + c + d = 0따라서,

 $\frac{a+b+c}{d^2} = \frac{a+b+c+d-d}{d^2} = -\frac{1}{d}$ 마찬가지로

 $\frac{a+b+d}{c^2} = -\frac{1}{c},$ $\frac{a+c+d}{b^2} = -\frac{1}{b},$ $\frac{b+c+d}{a^2} = -\frac{1}{a}$

f(x) = 0의 근이 a, b, c, d이면

 $-\frac{1}{a}$, $-\frac{1}{b}$, $-\frac{1}{c}$, $-\frac{1}{d}$ 을 근으로 하는 방정식은

 $f\left(-\frac{1}{x}\right) = 0$ 이다. $\therefore \left(-\frac{1}{x}\right)^4 - b\left(-\frac{1}{x}\right) - 3 = 0,$

 $1 + bx^3 - 3x^4 = 0$ $\therefore 3x^4 - bx^3 - 1 = 0$

- **16.** $3b-a+5 < \frac{2b-a}{3}x < b-2a+1$ 을 만족하는 x 의 범위가 6 < x < 9 가 되도록 하는 정수 a, b 에 대하여 $\frac{a}{b}$ 의 값을 구하여라.
 - 답:

▷ 정답: 6

주어진 부등식의 각 변을 $\frac{2b-a}{3}$ 로 나눌 때,

1) 2b-a>0 이면 $\frac{3(3b-a+5)}{2b-a} < x < \frac{3(b-2a+1)}{2b-a}$ 범위가 6 < x < 9 와 같으므로 $\frac{3(3b-a+5)}{2b-a} = 6, \frac{3(b-2a+1)}{2b-a} = 9$ 두 식을 연립하여 풀면 a=-6, b=-1 이고 2b-a>0 을 만족하고 정수이므로 적합하다.2) 2b-a<0 이면 $\frac{3(b-2a+1)}{2b-a} < x < \frac{3(3b-a+5)}{2b-a}$ 범위가 6 < x < 9 와 같으므로 $\frac{3(b-2a+1)}{2b-a} = 6, \frac{3(3b-a+5)}{2b-a} = 9$ 두 식을 연립하여 풀면 $a=-2, b=\frac{1}{3} \text{ 이고 } b \text{ 의 값은 정수가 아니므로 적합하지 않다.}$ 따라서 a=-6, b=-1 이므로 $\frac{a}{b}=6$ 이다.

17. 어떤 공장에서 벨트와 신발을 만드는 데 드는 비용과 판매가는 다음과 같다.

,		재료비(원)	가공비(원)	판매가(원)
	벨트	5000	3000	10000
	신발	4000	7000	15000

하루에 만드는 벨트와 신발의 개수의 합이 250 개이고, 재료비는 140 만원 이하, 가공비는 115 만원 이하가 되게 하려고 한다. 하루에 만든 벨트와 신발을 모두 팔았을 때, 최대 판매금액을 구하여라.

원

▷ 정답: 3000000 <u>원</u>

답:

해설

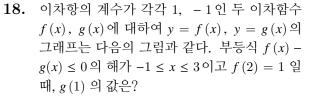
벨트의 개수를 x 개라 하고 신발의 개수를 y 개라 하면, x + y =

250, y = 250 - x 재료비는 140 만원 이하이므로

 $5000x + 4000y \le 1400000,$ $5x + 4(250 - x) \le 1400 \dots \bigcirc$

가공비는 115 만원 이하이므로 3000x + 7000y ≤ 1150000,

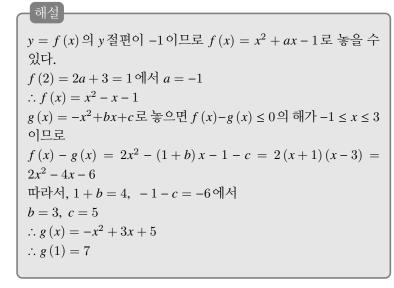
 $3000x + 7000y \le 1150000,$ $3x + 7(250 - x) \le 1150 \cdots$


① 을 풀면 *x* ≤ 400 ⓒ 을 풀면 *x* ≥ 150

(L) 을 풀면 x ≥ 150 ∴ 150 ≤ x ≤ 400

벨트와 신발을 모두 팔았을 때, 최대한 많은 금액을 받으려면,

신발을 많이 판매해야 하고 벨트는 적게 판매해야 한다.


따라서 x = 150, y = 250 - 150 = 100 일 때, 최대 판매 금액은 $150 \times 10000 + 100 \times 15000 = 3000000$ (원) 이다.

y=g(x)

y=f(x)

① 4 ② 5 ③ 6 ④7 ⑤ 8

