1. 다음 중 항상 참이라고 할 수 <u>없는</u> 것은?

- ① 자연수 n에 대하여, n^2 이 짝수이면 n도 짝수 이다.
- ② 자연수 n, m에 대하여 $n^2 + m^2$ 이 홀수이면, nm은 짝수이다.
- ③ 자연수 n에 대하여, n^2 이 3의 배수이면, n은 3의 배수이다.
- ④ a, b가 실수일 때, $a + b\sqrt{2} = 0$ 이면, a = 0이다.
- ⑤ 두 실수 a, b에 대하여, a + b > 2이면, a > 1 또는 b > 1

해설

- ①, ③ : n^2 이 p의 배수이면, n은 p의 배수이다. (참)
- ② : 대우는 'nm 은 홀수이면 $n^2 + m^2$ 이 짝수이다.' nm은 홀수, 즉 n,m 모두 홀수이면 n^2, m^2 모두 홀수이므로 $n^2 + m^2$ 은 짝수이다.
- :. 주어진 명제는 참
- ④ 반례 : $a = 2\sqrt{2}, b = -1$
- % 주의) 주어진 명제가 참일 때는 a, b가 유리수라는 조건일 때임을 명심해야 한다.
- ⑤ 대우 : $a \le 1$ 그리고 $b \le 1$ 이면 $a + b \le 2$ (참)

2. $\sim p \rightarrow \sim q$ 의 역이 참일 때, 다음 중 반드시 참인 명제는?

$$4 \sim p \rightarrow q$$
 $5 p \rightarrow \sim q$

해설
'명제가 참이면 그의 대우는 항상 참이다.'

$$\sim p \rightarrow \sim q \Leftrightarrow \mathfrak{P}: \sim q \rightarrow \sim p(참)$$

 $\sim q \rightarrow \sim p \Leftrightarrow \text{대우 } p \rightarrow q(참)$

- 3. 집합 $A = \{x \mid -1 \le x \le 1, x \in A\}$ 에 대하여 $a \in A, b \in A$ 일 때, 다음 중 참인 명제는?
 - ① 임의의 a 에 대하여 $a^2 > 0$ 이다
 - ② $a^2 1 = 0$ 을 만족하지 않는 a 가 있다.
 - (3) 모든 a, b 에 대하여 $a^2 + b^2 = 1$ 을 만족한다.
 - (4) 모든 a, b 에 대하여 a + b > 2 이다
 - ⑤ |a| = |b| 이면 ab = 1 이다.

- ① a = 0 이면 $a^2 = 0$ 이므로 거짓이다. ② a = 0 이면 $a^2 = 0$ 이므로 참이다.
- ③ a = 1, b = 1 이면 $a^2 + b^2 = 2$ 이므로 거짓이다.
- ④ a = 0, b = 0 이면 a + b = 0 이므로 거짓이다.
- ⑤ a = 1, b = -1 이면 |a| = |b| = 1 이지만 ab = -1 이므로

거짓이다.

4. 실수 x 에 대하여 명제 ' $ax^2 + a^2x - 6 \neq 0$ 이면 $x \neq 2$ 이다.' 가 참이기 위한 모든 실수 a 의 값의 합을 구하여라. (단, $a \neq 0$)

주어진 명제가 참이므로 대우도 참이다.
즉, '
$$x = 2$$
 이면 $ax^2 + a^2x - 6 = 0$ 이다.' 가 참이므로
 $4a + 2a^2 - 6 = 0$, $2a^2 + 4a - 6 = 0$.

 $\begin{vmatrix} a^2 + 2a - 3 = 0, \ (a+3)(a-1) = 0 \\ ∴ \ a = -3 \ £ ∃ a = 1 \end{vmatrix}$

따라서
$$a$$
 의 값의 합은 $-3+1=-2$

세 조건 p,q,r의 진리집합을 각각 P,Q,R라 하면 P∪Q = P, P∩R = φ
 인 관계가 성립한다. 이 때, 다음 중 반드시 참이라고 할 수 없는 것
 은?

 $\bigcirc \sim p \rightarrow \sim q$

 $\mathfrak{I} q \to r$

(1) $p \rightarrow \sim r$

$$P \cup Q = P \Rightarrow Q \subset P \Rightarrow q \to p \Leftrightarrow \sim p \to \sim q$$

$$P \cap R = \emptyset \Rightarrow p \to \sim r \Leftrightarrow r \to \sim p \ q \to p, p \to \sim r$$
이므로 $q \to \sim r$

6. 다음은 명제 '정수 x, y, z에 대하여 x² + y² = z² 이면 x, y, z 중 적어도 하나는 3의 배수이다.' 가 참임을 대우를 이용하여 증명한 것이다. (가) ~ (마)에 들어갈 말로 <u>틀린</u> 것은?

주어진 명제의 대우인 '정수 x, y, z에 대하여 x, y, z가 모두 3 의 배수가 아니면 (가)이다.'가 참임을 증명해 보자. x, y, z 가 모두 3의 배수가 아니면, x, y, z는 각각 $x = 3l \pm 1, y = 3m \pm 1, z = 3n \pm 1$ (l, m, n 은 정수)로 나타낼 수 있다. 이때. $x^2 + y^2 = (3l \pm 1)^2 + (3m \pm 1)^2$ $=9l^2 \pm 6l + 1 + 9m^2 \pm 6m + 1$ $=9(l^2+m^2)\pm 6(l+m)+2$ 또는 $x^2 + y^2 = (1)$ = (다) $= 9(l^2 + m^2) \pm 6(l - m) + 2$ 하편. $z^2 = (3n \pm 1)^2 = 9n^2 \pm 6n + 1$ 따라서, $x^2 + y^2 \neq z^2$ 이므로 주어진 명제의 대우는 (라)이다. 그러므로 주어진 명제 $(x^2 + y^2) = z^2$ 이면 x, y, z 중 적어도 하나는 3의 배수이다.'는 (마)이다.

①
$$(7)$$
 $x^2 + y^2 \neq z^2$

②(나)
$$(3l \pm 1)^2 + (3m \pm 1)^2$$

③ (다)
$$9l^2 \pm 6l + 1 + 9m^2 \mp 6m + 1$$

- ④ (라) 참
- ⑤ (마) 참

7. 두 조건 p,q를 만족시키는 집합 $P = \{x \mid a < x < a + 1\}$, $Q = \{x \mid x + \frac{1}{x} \le -2\}$ 에 대하여 $p \to q$ 를 참이 되게하는 실수 a의 최댓값을 구하면?

(5) 3

③ 1

해설
$$(i) x < 0 \circ) 면$$

$$x + \frac{1}{x} + 2 = \frac{x^2 + 2x + 1}{x} = \frac{(x+1)^2}{x} \le 0$$

$$\therefore x + \frac{1}{x} \le -2$$

$$(ii) x > 0 \circ) 면$$

$$x + \frac{1}{x} \ge 2 \circ | \text{므로 } Q = \text{만족시키지 못한다.}$$

$$(i), (ii) \circ | \text{의하여 } Q = \{x | x < 0\}$$

$$\therefore P \subset Q \circ | \text{에서 } a + 1 \le 0, a \le -1$$

$$P \subset Q \circ | \text{마라서, } p \to q = \text{참 } | \text{되게 하는 실수 } a \circ | \text{최댓값은 } -1 \circ | \text{다.}$$

8. 네 개의 명제 p, q, r, s가 다음과 같은 관계를 만족시킬 때, 반드시참인 명제는? (단, 명제 $p \to q$ 가 참일 때 $p \Rightarrow q$ 로 나타낸다.)

$$\bigcirc$$
 p, q, r, s

 $\Im q, r$

$$\bigcirc \sim r$$
 그리고 $p \rightarrow \sim q \Leftrightarrow q \rightarrow r$ 또는 $\sim p$

⑤
$$p \rightarrow \infty$$
 3 $\rightarrow p$
⑥, ②에서 s 가 참이든, 거짓이든 반드시 p 는 참이다. ①에서 p

가 참이면
$$q$$
가 참이고 \bigcirc 에서 q 가 참이면 r 도 참이다. ($\because \sim p$ 는 거짓) \bigcirc 에서 대우가 참이므로 s 도 참이다.