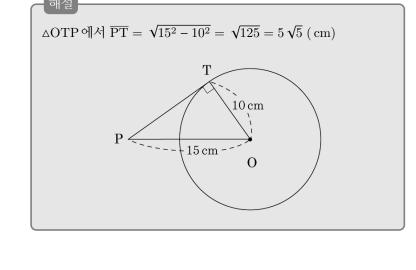
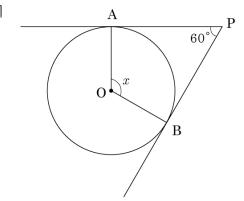

1. 다음 그림에서 x 의 값을 구하면?

① 3 ② 4 ③ 5 ④ $2\sqrt{3}$


-

 $\bigcirc 3\sqrt{2}$

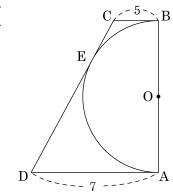

 $\overline{\text{MB}} = 3$, $\triangle \text{OMB}$ 에서 $\overline{\text{OB}} = \sqrt{3^2 + 3^2} = 3\sqrt{2}$

따라서 $x=3\sqrt{2}$ 이다.

- 한 원의 반지름의 길이가 $10\,\mathrm{cm}$ 이라고 한다. 이 원의 중심 O 로부터 **2**. 15 cm 떨어진 점 P 에서 이 원에 그은 접선의 길이는?
 - ① $2\sqrt{5}$ (cm) ② $4\sqrt{5}$ (cm)
- $35\sqrt{5}$ (cm)

3. 그림을 보고 $\angle x$ 의 크기 는?

 $\textcircled{4} \angle x = 120^{\circ} \qquad \qquad \textcircled{5} \ \angle x = 122^{\circ}$

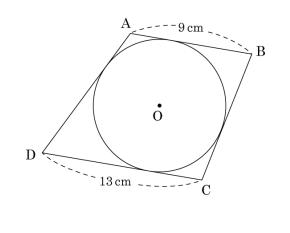

① $\angle x = 110^{\circ}$ ② $\angle x = 115^{\circ}$ ③ $\angle x = 117^{\circ}$

해설

 $\angle PAO = \angle PBO = 90^{\circ}$

 $\angle x = 360^{\circ} - 180^{\circ} - 60^{\circ} = 120^{\circ}$ \therefore $\angle x = 120^{\circ}$

다음 그림은 반원 O 와 3개의 접선을 **4.** 그린 것이다. $\overline{\mathrm{AD}}=7$, $\overline{\mathrm{BC}}=5$ 이라 할 때, $\overline{\mathrm{CD}}$ 의 길이는?



① 11 ② 12 ③ 13 ④ 14 ⑤ 15

 $\overline{\mathrm{DE}} = 7, \ \overline{\mathrm{CE}} = 5$ $\therefore \overline{\, DC} = 7 + 5 = 12$

해설

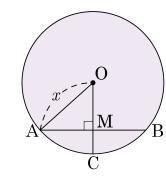
다음 그림은 사각형 ABCD 에 내접해 있는 원 O 를 그린 것이다. **5.** $3\overline{\mathrm{AD}} + 3\overline{\mathrm{BC}}$ 의 길이는?

① 55

266

③ 77 ④ 88

⑤ 99


 $\overline{\mathrm{AB}} + \overline{\mathrm{CD}} = \overline{\mathrm{AD}} + \overline{\mathrm{BC}}$ 이므로

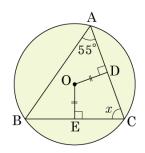
해설

 $9+13=\overline{\rm AD}+\overline{\rm BC}$ $\therefore \overline{AD} + \overline{BC} = 22 \text{ (cm)}$

따라서 $3\overline{AD} + 3\overline{BC} = 3 \times 22 = 66$ 이다.

6. 다음 그림에서 $\overline{\rm AB}\bot\overline{\rm OC}$, $\overline{\rm MB}=6$, $\overline{\rm MC}=4$ 일 때, x 의 길이를 구하여라.

① $13\sqrt{3}$ ② $13\sqrt{2}$ ③ 13

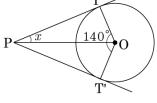

 $\boxed{4} \frac{13}{2} \qquad \boxed{5} \frac{13}{4}$

 $\overline{\text{OA}} = \overline{\text{OC}} \stackrel{\text{def}}{=} x$ 라 두면 $\overline{\text{OM}} = x - 4$ 로 둘 수 있다. $x^2 = (x - 4)^2 + 6^2$ $x^2 = x^2 - 8x + 16 + 36$

 $8x = 52 \quad \therefore x = \frac{13}{2}$

해설

7. 다음 그림의 원 O 에서 ∠CAB = 55°일 때, ∠ACB 의 크기는?


① 50° ② 55° ③ 60° ④ 65°

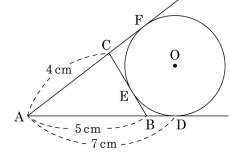
⑤ 70°

해설 중심에서 현에 내린 수선의 길이가 같으므로

 $\overline{\mathrm{AC}} = \overline{\mathrm{BC}}$, 따라서 $\Delta \mathrm{ABC}$ 는 이등변삼각형 $\therefore x = 180^{\circ} - 55^{\circ} \times 2 = 70^{\circ}$

8. 다음 그림에서 직선 PT, PT'은 원 O 의 접선이고, ∠TOT′ = 140°일 때, ∠TPO 의 크기는?

① 10° ②20° 3 30° 4 35°

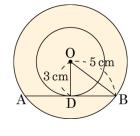

⑤ 40°

 $\triangle POT \equiv \triangle POT \prime \text{ (RHS 합동)}$

해설

 $\therefore x = \frac{1}{2} (180^{\circ} - 140^{\circ}) = 20^{\circ}$

9. 다음 그림에서 반직선AD, 반직선AF, 선분 BD는 모 두 원 O의 접선이다. \overline{BC} 의 길이는?


- ① 1 ② 2
 - 3
- 4
- **⑤**5

해설

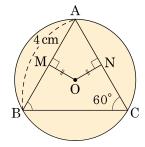
 $\overline{BE} = \overline{BD} = 7 - 5 = 2 \text{ (cm)}$ $\overline{\rm AF} = \overline{\rm AD} = 7 \ (\,{\rm cm})$

 $\overline{\text{CE}} = \overline{\text{CF}} = 7 - 4 = 3 \text{ (cm)}$ $\overline{BC} = 2 + 3 = 5 \text{ (cm)}$

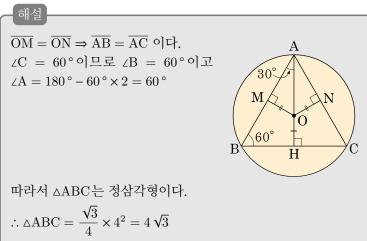
- ${f 10}$. 다음 그림에서 ${f AB}$ 의 길이는? (단, ${f AB}$ 는 작은 원의 접선이다.)

 \bigcirc 4 cm

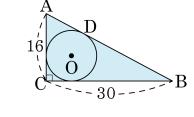
 \bigcirc 6 cm


 $38 \, \mathrm{cm}$

해설


(4) $6\sqrt{2}$ cm (5) $6\sqrt{3}$ cm

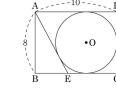
 $\overline{BD} = \sqrt{5^2 - 3^2} = 4(\text{ cm})$ $\therefore \overline{AB} = 2\overline{BD} = 4 \times 2 = 8(\text{ cm})$


11. 다음 그림과 같이 원의 중심 O 와 두 현 AB, AC 사이의 거리가 같고 $\overline{\mathrm{AB}}$ = 4, ∠BCA = 60° 이다. 이 때, △ABC 의 넓이는?

① $4\sqrt{3}$ ② $6\sqrt{2}$ ③ $9\sqrt{3}$ ④ $12\sqrt{2}$ ⑤ $12\sqrt{3}$

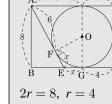
12. 다음 그림에서 원 O 는 직각삼각형 ABC 의 내접원이다. 원 O 의 반지름의 길이는?

① 6 ② $6\sqrt{2}$ ③ 3 ④ $3\sqrt{3}$ ⑤ 8


원 O 의 반지름을 r 이라 하면 $\overline{\text{CE}} = \overline{\text{CF}} = r$, $\overline{\text{AD}} = 16 - r$, $\overline{\text{BD}} = 30 - r$

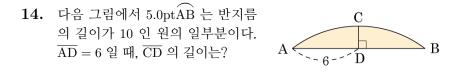
 $\overline{AB} = \sqrt{30^2 + 16^2} = 34$

 $\overline{AB} = \overline{AD} + \overline{BD}$


 $34 = (16 - r) + (30 - r) \quad \therefore r = 6$

13. 다음 그림에서 $\Box ABCD$ 는 $\overline{AB}=8,\ \overline{AD}=10$ 인 직사각형이다. 원 O 가 □AECD 에 내접할 때, △ABE 의 넓이를 구하면?

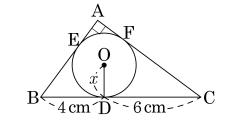
- ① $\frac{38}{3}$ ② $\frac{40}{3}$ ③ 14 ④ $\frac{44}{3}$ ⑤ $\frac{46}{3}$


원 O 의 반지름의 길이를 r 라 하면

 $\overline{\mathrm{FE}} = \overline{\mathrm{EG}} = x(x < 6)$ 라 하면 $\overline{\mathrm{BE}} + \overline{\mathrm{EC}} = 10$ 이므로 $\overline{\mathrm{BE}} = 6 - x$ 이다.

- △ABE 에서 $(6+x)^2 = (6-x)^2 + 64, \ 24x = 64$

- $\therefore \overline{BE} = 6 \frac{8}{3} = \frac{10}{3}$ $\therefore \triangle ABE = \frac{1}{2} \times 8 \times \frac{10}{3} = \frac{40}{3}$



① 1 ② $\sqrt{2}$ ③ $2\sqrt{2}$ ④ 2 ⑤ $\sqrt{5}$

원의 중심 O 과 점 D , 점 A를 연결한다. $\triangle AOD$ 에서 $\overline{OD} = \sqrt{\overline{AO}^2 - \overline{AD}^2} = \sqrt{10^2 - 6^2} = 8$

 $\therefore \overline{CD} = \overline{OC} - \overline{OD} = 10 - 8 = 2$

15. 다음 그림에서 점 D, E, F 는 직각삼각형 ABC 와 내접원 O 의 접점일 때, 원 O 의 넓이는?

 $4\pi \text{cm}^2$

① πcm^2

- ② $2\pi \text{cm}^2$ ③ $5\pi cm^2$
- $3 \pi \text{cm}^2$
- ⊕ onem

 $\overline{\overline{\mathrm{BD}}} = 4\mathrm{cm}, \ \overline{\mathrm{CD}} = 6\mathrm{cm}$ 이므로

해설

 $\overline{AB} = (4+x) \text{cm}, \overline{AC} = (6+x) \text{cm}$ 이다. $(4+x)^2 + (6+x)^2 = 10^2$

 $2x^2 + 20x + 52 = 100$

 $\begin{vmatrix} 2x^2 + 20x + 52 = 100 \\ x^2 + 10x - 24 = 0 \end{vmatrix}$

(x-2)(x+12) = 0

따라서 x = 2 (x > 0) 이므로 원 O 의 넓이는 $2^2\pi = 4\pi \text{ (cm}^2)$