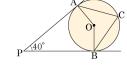

1. 다음 그림은 원 O 에 내접하고, $\overline{\mathrm{OM}} = \overline{\mathrm{ON}}$, $\angle \mathrm{A} = 70\,^{\circ}$ 인 삼각 형을 그린 것이다. ∠ABC 의 크 기는?

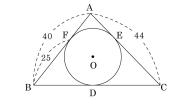
① 60°

②50° 3 45° 4 35°

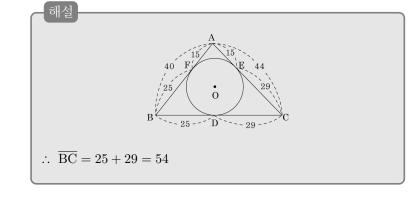

⑤ 30°

 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 이므로 $\Delta \mathrm{ABC}$ 는 이등변삼각형

해설

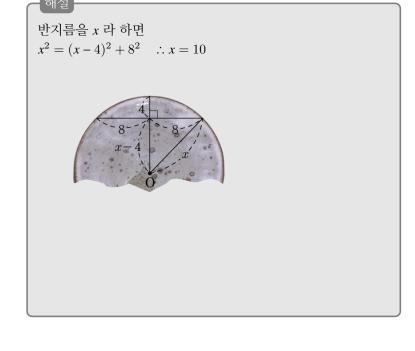

 $\therefore \angle ABC = (180^{\circ} - 80^{\circ}) \div 2 = 50^{\circ}$

2. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이고 $\angle APB = 40^\circ$ 일 때, $\angle ACB$ 의 크기는?



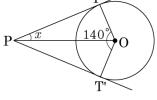
① 65° ② 70° ③ 75° ④ 80° ⑤ 85°

 $\angle PAO = \angle PBO = 90^{\circ}, \ \angle AOB = 140^{\circ}$ $\therefore \ \angle ACB = \frac{1}{2} \times \angle AOB = \frac{1}{2} \times 140^{\circ} = 70^{\circ}$ 3. 다음 그림에서 원 O 는 $\triangle ABC$ 의 내접원이다. 점 D, E, F 가 접점일 때, \overline{BC} 의 길이를 구하여라.


- ① 51 ② 52
 - 0 0
- ③ 53
- **4** 54
- **⑤** 55

4. 원 모양의 토기 조각에서 다음 그림과 같이 크기를 측정하였다. 이 토기의 원래 크기의 넓이는?

① 4π ② 36π ③ 64π ④ 100π ⑤ 144π



- 5. 다음 한 원과 직선에 대한 설명 중 잘못된 것은?
 - 원의 중심에서 현에 내린 수선은 그 현을 수직이등분 한다.
 같은 길이의 현은 원의 중심으로부터 같은 거리에 있다.
 - ③ 원의 중심으로부터 같은 거리에 있는 현은 그 길이가 같다.
 - ④ 현의 길이는 부채꼴의 중심각의 크기에 비례한다.
 - ⑤ 현의 수직이등분선은 원의 중심을 지난다.

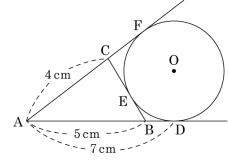
현의 길이는 중심각의 크기에 비례하지 않는다.

해설

6. 다음 그림에서 직선 PT, PT'은 원 O 의 접선이고, ∠TOT′ = 140°일 때, ∠TPO 의 크기는?

① 10°

해설


②20° 3 30° 4 35°

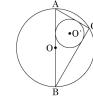
⑤ 40°

 $\triangle POT \equiv \triangle POT \prime \text{ (RHS 합동)}$

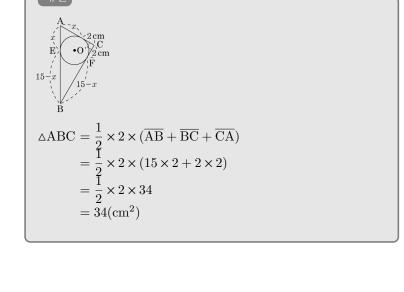
 $\therefore x = \frac{1}{2} (180^{\circ} - 140^{\circ}) = 20^{\circ}$

7. 다음 그림에서 반직선AD, 반직선AF, 선분 BD는 모 두 원 O의 접선이다. \overline{BC} 의 길이는?

- ① 1 ② 2 ③ 3
- 4 4
- **⑤**5


 $\overline{\mathrm{BE}} = \overline{\mathrm{BD}} = 7 - 5 = 2 \text{ (cm)}$

해설


 $\overline{\mathrm{AF}} = \overline{\mathrm{AD}} = 7 \; (\,\mathrm{cm})$

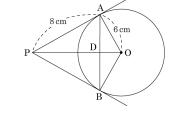
 $\overline{\text{CE}} = \overline{\text{CF}} = 7 - 4 = 3 \text{ (cm)}$ $\overline{BC} = 2 + 3 = 5 \text{ (cm)}$

8. 다음 그림에서 $\triangle ABC$ 의 외접원의 지름의 길이는 15cm 이고 내접원의 지름의 길이는 4cm 이다. \overline{AB} 가 외접원의 지름일 때, $\triangle ABC$ 의넓이를 구하면? (단, $\angle C$ 는 직각이다.)

- ① 31cm^2 ④ 34cm^2
- ② 32cm² ③ 35cm²
- $33 cm^2$

다음 그림에서 PA 는 원 O 의 접선이고 점 T 는 접점이다. PT = 6 cm, PA = 2 cm 일 때, 원 O 의 반지름의 길이는?
 ① 4 cm
 ② 6 cm
 ③ 7 cm

2 cm A P O 6 cm


48 cm

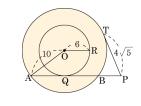
⑤ 12 cm

-해설}----

 $\overline{\mathrm{AO}} = \overline{\mathrm{TO}} = r$ 이라 하면, $\overline{\mathrm{OP}^2} = \overline{\mathrm{PT}^2} + \overline{\mathrm{OT}^2}$ 에 의하여 $(r+2)^2 = 36 + r^2$ $\therefore r = 8$

10. 다음 그림에서 두 직선 PA, PB 는 반지름의 길이가 6 cm 인 원 O 의 접선이고 점 A, B 는 접점이다. $\overline{PA} = 8 \text{cm}$ 일 때, \overline{AB} 의 길이는?

① 10cm ④ 12.4cm 9.6cm25cm


③ 12cm

삼각형 PAO 는 직각삼각형이므로 $\overline{PO}=10$ cm 이다.

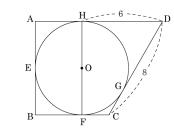
또한, $\overline{AB} \bot \overline{PO}$ 이므로 $\overline{PA} \times \overline{AO} = \overline{PO} \times \overline{AD} \Rightarrow 8 \times 6 = 10 \times \overline{AD} \therefore \overline{AD} = 4.8 \mathrm{cm}$ 따라서 수선 OD 는 현 AB 를 이등분하므로 $\overline{AB} = 2\overline{AD} = 9.6 \mathrm{cm}$

이다.

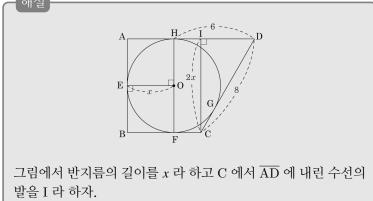
11. 다음 그림에서 두 동심원의 반지름의 길이가 각각 $6 \mathrm{cm}$, $10 \mathrm{cm}$ 이고 점 Q, T 는 작은 원과 큰 원의 접점이다. 이 때, \overline{PB} 의 길이는?

① 1 ② 2 ③ 3

⑤ 5

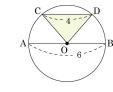

 $\overline{\mathrm{OQ}} = 6$ 이므로 $\overline{\mathrm{AQ}} = 8$ $\overline{\mathrm{BQ}} = \overline{\mathrm{AQ}} = 8$

 $\overline{PT}^2 = \overline{PB} \times \overline{PA}$


80 = x(x+16)

 $\therefore x = 4$

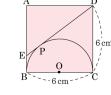
12. 다음 그림과 같이 원 O 의 외접사각형 ABCD 에서 네 점 E, F, G, H 는 접점이고 선분 HF 는 원 O 의 지름이다. $\overline{\text{CD}} = 8, \overline{\text{DH}} = 6$ 일 때, 원 O 의 반지름의 길이는?


① 3 ② $\sqrt{10}$ ③ $3\sqrt{2}$ ④ 4 ⑤ $2\sqrt{3}$

 $\overline{\text{CI}} = 2x$, $\overline{\text{DH}} = 6$ 이므로 $\overline{\text{DG}} = 6$, $\overline{\text{HI}} = \overline{\text{CF}} = \overline{\text{CG}} = 2$ 이고 $\overline{\text{DI}} = 4$

 $\triangle \text{CDI} 에서 <math>(2x)^2 + 4^2 = 8^2$: $x = 2\sqrt{3}$

13. 다음 그림에서 \overline{AB} 는 원 O 의 지름이다. $\overline{AB}=6$, $\overline{CD}=4$ 이고 \overline{AB} $/\!/$ \overline{CD} 일 때, $\triangle COD$ 의 넓이는?


① $\sqrt{3}$ ② $\sqrt{5}$ ③ $2\sqrt{3}$

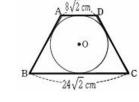
 $4 2\sqrt{5}$

⑤ 3

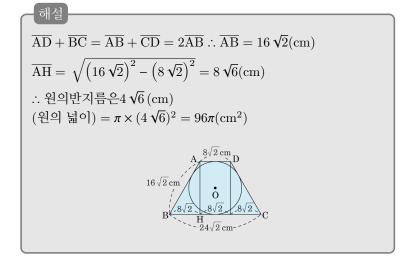
해설 $\overline{\mathrm{OC}}=3,\ \overline{\mathrm{CE}}=2$ 이므로 $\overline{\mathrm{OE}}=\sqrt{3^2-2^2}=\sqrt{5}$ 이다. 따라서 $\triangle COD = \frac{1}{2} \times 4 \times \sqrt{5} = 2\sqrt{5}$ 이다.

14. 다음 그림에서 □ABCD 는 한 변의 길이가 $6 \mathrm{cm}$ 인 정사각형이다. $\overline{\mathrm{DE}}$ 가 \overline{BC} 를 지름으로 하는 원에 접할 때, \overline{AE} 의 길이는?

- ③ 13cm


 $\overline{\mathrm{EP}} = \overline{\mathrm{EB}} = x$

 $\overline{\mathrm{AE}} = 6 - x$


 $\Delta AED \circlearrowleft \overline{AE}$ $\overline{DE}^2 = \overline{AE}^2 + \overline{DA}^2$ $(x+6)^2 = (6-x)^2 + 6^2$ 24x = 36 $x = \frac{3}{2} \text{ cm}$

따라서 $\overline{AE} = 6 - \frac{3}{2} = \frac{9}{2} (cm)$

15. 다음 그림과 같이 원 O 에 외접하는 등변사다리꼴 ABCD 가 있다. $\overline{\rm AD} = 8\,\sqrt{2}{\rm cm}$, $\overline{\rm BC} = 24\,\sqrt{2}{\rm cm}$ 일 때, 내접원 O 의 넓이는?

- ① $69\pi \text{cm}^2$
- ② $69 \sqrt{2}\pi \text{cm}^2$ ⑤ $8 \sqrt{6}\pi \text{cm}^2$
- 396πcm²
- $96 \sqrt{2}\pi \text{cm}^2$

