- 1. $A = 4xy^2 2x^2y + 3x^2y^2$, $B = x^2y 3x^2y^2 2xy^2$ 일 때, A + 2B 를 간단히 하면?

 - ① xy^2 ② x^2y
- ③ x^2y^2
- $(4) -2xy^2$ $(5) -3x^2y^2$

A+2B

 $= (4xy^2 - 2x^2y + 3x^2y^2) + (2x^2y - 6x^2y^2 - 4xy^2)$ = -3x^2y^2

해설

2. $a^2b^3c^4$, $ab^2c^4e^3$ 의 최대공약수를 구하면?

① ab^2c^3 \bigcirc $ab^2c^4e^3$ $(4) a^2b^3c^4$

해설

두 식의 공통인수 중 낮은 차수를 선택하여 곱한다. $a^2b^3c^4$, $ab^2c^4e^3$ 에서 공통인수는 a,b,c이고 차수가 낮은 것은 각각 a, b^2, c^4 이다. 이들을 모두 곱하면 최대공약수는 ab^2c^4

3. $\frac{2+3i}{3-i}$ 를 계산하면?

①
$$\frac{3+11i}{8}$$
 ② $\frac{9+11i}{8}$ ③ $\frac{3+11i}{10}$ ③ $\frac{9+11i}{10}$

해설
$$\frac{2+3i}{3-i} = \frac{(2+3i)(3+i)}{(3-i)(3+i)}$$

$$= \frac{6-3+11i}{10}$$

$$= \frac{3+11i}{10}$$

 $3 \frac{3+9i}{10}$

4. 이차함수 $y = 2x^2 + kx - k$ 의 그래프가 x축과 만나도록 하는 상수 k의 값이 아닌 것은?

① -8

- ②-1 ③ 0 ④ 5 ⑤ 8

이차방정식 $2x^2+kx-k=0$ 에서 $D=k^2-4\cdot 2\cdot (-k)\geq 0$ 이어야

하므로 $k^2 + 8k \ge 0, \ k(k+8) \ge 0$

 $\therefore k \le -8$ 또는 $k \ge 0$

따라서 위의 k의 값의 범위에 속하지 않는 것은 2이다.

5. 이차함수 $y = -2x^2 + 4x - 1$ 의 최댓값과 최솟값은?

① 최댓값: 1, 최솟값: 없다 ② 최댓값: 1, 최솟값: -5 ③ 최댓값: 4, 최솟값: 없다 ④ 최댓값: 없다, 최솟값: 1 ⑤ 최댓값: 1, 최솟값: -3

 $y = -2x^2 + 4x - 1$ = $-2(x - 1)^2 + 1$ x = 1 일 때, 최댓값 1을 갖는다.

해설

또한, x^2 의 계수가 음수이므로 최솟값은 없다.

6. 다음 중 다항식 $x^4 - 5x^2 + 4$ 를 인수분해 할 때, 나타나는 인수가 <u>아닌</u> 것은?

① x-1 ② x-2 ③ x-3 ④ x+1 ⑤ x+2

해설 $x^4 - 5x^2 + 4 = (x^2 - 1)(x^2 - 4)$ = (x+1)(x-1)(x+2)(x-2)

7. 이차식 $2x^2 - 4x + 3$ 을 복소수 범위에서 인수분해하면?

①
$$(x-3)(2x+1)$$

② $2\left(x-1-\frac{\sqrt{2}i}{2}\right)\left(x-1+\frac{\sqrt{2}i}{2}\right)$

$$(x+3)(2x-1)$$

$$\sqrt{2}i$$

$$(3) (x+3)(2x-1)$$

$$(4) 2\left(x+1-\frac{\sqrt{2}i}{2}\right)\left(x-1+\frac{\sqrt{2}i}{2}\right)$$

$$(5) 2\left(x-1-\frac{\sqrt{2}i}{2}\right)\left(x+1+\frac{\sqrt{2}i}{2}\right)$$

$$a = 2, b' = -2, c = 3$$

$$x = \frac{2 \pm \sqrt{4 - 6}}{3} = \frac{2 \pm \sqrt{4 - 6}}{3}$$

$$a = 2, b' = -2, c = 3$$

$$x = \frac{2 \pm \sqrt{4 - 6}}{2} = \frac{2 \pm \sqrt{2}i}{2} = 1 \pm \frac{\sqrt{2}}{2}i$$

$$\therefore 2\left(x - 1 - \frac{\sqrt{2}}{2}i\right)\left(x - 1 + \frac{\sqrt{2}}{2}i\right)$$

8. $x^2 + ax + b = 0$ (a, b 는 실수)의 한 근이 1 + i 일 때, a 의 값은?

1 -2 ② -1 ③ 0 ④ 1 ⑤ 2

한 근이 1+i 이므로, 켤레근 1 - i 도 식의 근. (1+i) + (1-i) = -a $\therefore a = -2$

- 9. 사차방정식 $x^4 + x^3 7x^2 x + 6 = 0$ 의 근이 <u>아닌</u> 것은?
 - ① -3 ② -1 ③ 1 ④ 2

대입하여 성립하는 수들을 찾아내어 조립제법으로 인수분해를

하면 $x^4 + x^3 - 7x^2 - x + 6 = 0$

$$(x-1)(x^3 + 2x^2 - 5x - 6) = 0$$
$$(x-1)(x-2)(x^2 + 4x + 3) = 0$$

$$(x-1)(x-2)(x^2+4x+3) = 0$$

10. x에 대한 삼차방정식 $x^3 + 3x^2 - kx - 5 = 0$ 의 한 근이 -1일 때, 상수 k의 값은?

- ① -5 ② -3 ③ -1 ④ 1

해설

 $x^3 + 3x^2 - kx - 5 = 0$ 의 한 근이 -1이므로 x = -1을 대입하면 $(-1)^3 + 3(-1)^2 - k(-1) - 5 = 0$ $\therefore k = 3$

11. x의 다항식 f(x)를 x+1로 나눌 때, 나머지가 2이다. 이 때, $(x^2-x+3) f(x)$ 를 x+1로 나눈 나머지를 구하면?

① 10 ② 6 ③ 0 ④ 30 ⑤ 12

해설 f(-1) = 2 $(x^2 - x + 3) f(x) = (x + 1)Q(x) + R$ x = -1 대임 $\therefore R = 5f(-1) = 5 \times 2 = 10$

- **12.** 두 이차식의 $x^2 + ax + 2b$, $x^2 + bx + 2a$ 최대공약수가 일차식일 때 a+b 의 값은?

해설

- ① 0 ② 2 ③ -2 ④ 4 ⑤ 9

일차식은 최대공약수를 $x - \alpha$ 라 놓으면

두 다항식은 각각 $x - \alpha$ 로 나누어 떨어지므로 $\alpha^2 + a\alpha + 2b = 0 \cdots \bigcirc$

 $\alpha^2 + b\alpha + 2a = 0 \cdot \cdot \cdot \cdot \bigcirc$ \bigcirc - \bigcirc 하면 $(a-b)\alpha - 2(a-b) = 0$

 $\therefore (a-b)(\alpha-2)=0$

a=b 이면 두 다항식이 같게 되어 조건이 어긋난다.

따라서 $\alpha=2$ 일 때 이 값을 \bigcirc 에 대입하면 $\therefore a+b=-2$

13. 이차함수 $y = -x^2 - 4x + k$ 의 그래프를 y 축의 방향으로 -3 만큼 평행이동한 그래프가 x 축에 접할 때, 상수 k 의 값은?

① -1 ② 0 ③ 1 ④ 2 ⑤ 3

 $y = -x^2 - 4x + k$ 의 그래프를

y 축의 방향으로 -3 만큼 평행이동하면 $y - (-3) = -x^2 - 4x + k$

 $y = -x^2 - 4x + k - 3$

 $y = -(x+2)^2 + k + 1$

이 그래프가 x 축에 접하려면 꼭지점의 y 좌표가 0 이어야 하므로 k+1=0

 $\therefore k = -1$

- **14.** 등식 $(1+2x-x^2)^{10}=a_0+a_1x+a_2x^2+\cdots+a_{20}x^{20}$ 이 x에 대한 항등식일 때, $a_0+a_2+a_4+\cdots+a_{18}+a_{20}$ 의 값은?
 - - (Z) –Z°
- (4) 2⁹
- \bigcirc 2^{10}

해설 $(1+2x-x^2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20} \dots$

 \bigcirc 은 x에 대한 항등식이므로 x에 어떤 실수 값을 대입해도 항상성립한다. \bigcirc 의 양변에 x=1을 대입하면

 $2^{10} = a_0 + a_1 + a_2 + a_3 + \dots + a_{19} + a_{20} + \dots$

 \bigcirc 의 양변에 x=-1을 대입하면 $(-2)^{10}=a_0-a_1+a_2-a_3+\cdots-a_{19}+a_{20}\cdots$ \bigcirc

①+ⓒ을 하면

 $2^{10} + (-2)^{10} = 2(a_0 + a_2 + a_4 + \dots + a_{20})$ $2 \times 2^{10} = 2(a_0 + a_2 + a_4 + \dots + a_{20})$

 $\therefore a_0 + a_2 + a_4 + \dots + a_{18} + a_{20} = 2^{10}$

15. 방정식 $x^2+3x+1=0$ 의 두 근을 α,β 라 할 때, $(\alpha^2+5\alpha+1)(\beta^2-4\beta+1)$ 의 값은?

① -2 ② -4 ③ -8 ④ -14 ⑤ -17

방정식 $x^2 + 3x + 1 = 0$ 의 근이 α , β 이므로 $\alpha^2 + 3\alpha + 1 = 0$, $\beta^2 + 3\beta + 1 = 0$ $\alpha^2 + 1 = -3\alpha$, $\beta^2 + 1 = -3\beta$ $\therefore (\alpha^2 + 5\alpha + 1)(\beta^2 - 4\beta + 1)$ $= (-3\alpha + 5\alpha)(-3\beta - 4\beta)$ $= -14\alpha\beta$ 근과 계수와의 관계에서 $\alpha\beta = 1$ 이므로

(주어진 식)= -14

해설