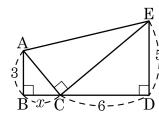
1. 다음 그림에서 $\angle B = \angle D = \angle ACE = 90^{\circ}$ 일 때, x 의 길이를 구하면?



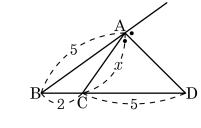
① 2

②2.5 ③ 3 ④ 3.5 ⑤ 4

 $\triangle ABC$ $\hookrightarrow \triangle CDE$ 이므로 3:6=x:5

 $\therefore x = 2.5$

2. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} 가 $\angle A$ 의 외각의 이등분선이다. 이 때, *x* 의 값은?



해설

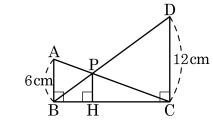
- ① 3 ② $\frac{22}{7}$ ③ $\frac{23}{7}$ ④ $\frac{24}{7}$ ⑤ $\frac{25}{7}$

다음 그림에서 $\overline{
m AD}$ $/\!/$ $\overline{
m FC}$ 가 되도록 직선 FC를 그으면 $\angle
m AFC$ = ∠ACF $\therefore \overline{AF} = \overline{AC} = x$ $\triangle ABD$ 에서 $\overline{AB}: \overline{AF} = \overline{BD}: \overline{CD}$ 이므로

5: x = 7:5

 $\therefore \ x = \frac{25}{7}$

3. 다음 그림에서 \overline{AB} , \overline{DC} , \overline{PH} 는 모두 \overline{BC} 에 수직이다. 이때, \overline{PH} 의 길이는?



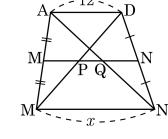
- 3cm
 4.2cm
- ② 3.6cm ③ 4.8cm
- ③4cm

 $\triangle ABP$ \hookrightarrow $\triangle CDP$ 에서 \overline{AP} : \overline{CP} = 6 : 12 = 1 : 2, 따라서

 $\overline{\text{CP}}: \overline{\text{CA}} = 2:3$ 이다. $\overline{\text{AB}}//\overline{\text{PH}}$ 이므로 $\overline{\text{CP}}: \overline{\text{CA}} = \overline{\text{PH}}: \overline{\text{AB}}$

 $2:3 = \overline{PH}:6$ $\therefore \overline{PH} = 4(cm)$

다음 그림의 사다리꼴 ABCD에서 점 M, N은 각각 \overline{AB} , \overline{CD} 의 중점이다. $\overline{AD}=12$, $\overline{MP}:\overline{PQ}=3:2$ 일 때, x값을 구하여라. 4.



▶ 답: ▷ 정답: 20

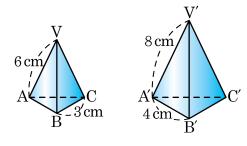
 $\overline{\mathrm{AM}} = \overline{\mathrm{MB}}, \ \overline{\mathrm{DN}} = \overline{\mathrm{NC}}$ 이므로 $\overline{\mathrm{AD}} \, /\!/ \, \overline{\mathrm{MN}} \, /\!/ \, \overline{\mathrm{BC}},$ $\triangle ABD$ 에서 $\overline{MP}=rac{1}{2}\overline{AD}=6$

$$\overline{\text{MP}}: \overline{\text{PQ}} = 3:2$$
이므로 $\overline{\text{PQ}} = \frac{2}{3}\overline{\text{MP}} = \frac{2}{3} \times 6 = 4$

파라서
$$x = \overline{BC} = 2\overline{MQ} = 2(\overline{MP} + \overline{PQ})$$
 $= 2 \times (6 + 4) = 20$ 이다.

$$= 2 \times (6+4) = 20$$
이다.

5. 다음 그림에서 두 삼각뿔 V – ABC 와 V′ – A′B′C′ 이 닮은꼴일 때, 보기에서 맞는 것을 고르면?



→ AB 의 대응변은 A'B' 이다.

- © 면 VBC에 대응하는 면은 면 V'A'B' 이다.
- © 닮음비는 2:1 이다.
- 닮음비는 3:4 이다.
- ◎ 면 VAB에 대응하는 면은 면 V'A'B' 이다.

④⑦, ⊜, ₪

 $\textcircled{1} \ \textcircled{3}, \textcircled{6}, \textcircled{6}$

(5) (E), (E), (D)

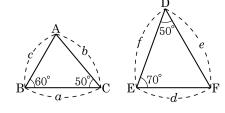
② ⋽, ∟, ⊜

 \bigcirc \bigcirc , \bigcirc , \bigcirc

⑤ 면 VBC에 대응하는 면은 면 V'B'C' 이다.⑥ 닮음비는 3 : 4 이다.

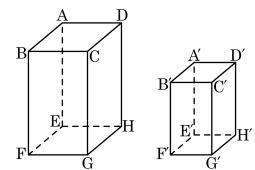
- 다음 그림의 두 삼각형은 닮 6. 은 도형이다. 두 삼각형의 닮 음비는?
 - $\bigcirc b: f$ ① a:d
 - $\textcircled{4} \ a:f$ $\Im c: e$
 - \bigcirc b:d

해설



△ABC ∽ △EFD 이므로 닮음비는 a:e=b:f=c:d

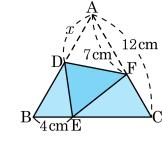
7. 다음 두 직육면체가 서로 닮음이고 □BFGC 와 □B'F'G'C' 가 서로 대응하는 면일 때, □C'G'H'D' 와 대응하면 면은?



- \bigcirc \square ABFE
- ③□CGHD

□C'G'H'D' 에 대응하는 면은 □CGHD 이다.

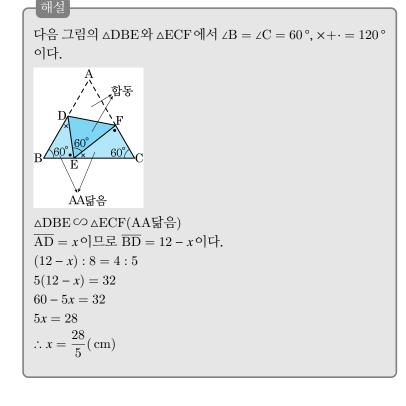
8. 다음 그림에서 정삼각형 \overline{ABC} 의 꼭짓점 \overline{A} 가 \overline{BC} 위의 점 \overline{E} 에 오도록 접었다. $\overline{AF}=7\,\mathrm{cm}, \overline{AC}=12\,\mathrm{cm}, \overline{BE}=4\,\mathrm{cm}$ 일 때, x의 길이를 구하여라.



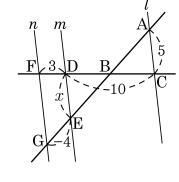
 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $\frac{28}{5}$ $\underline{\mathrm{cm}}$

▶ 답:



다음 그림에서 $l \parallel m \parallel n$ 이고, $\overline{\rm AE}$ 가 점 B로 이등분될 때, $\Delta {\rm BDE}$ 의 둘레의 길이를 구하여라. 9.



ightharpoonup 정답: $rac{50}{3}$

답:

해설

 $\overline{AE} = 2y$ 라고 하면 2y: 4 = 10: 3이므로 $y = \frac{20}{3}$ 이다. 또, 점 B가 \overline{AE} 의 중점이므로 x = 5이다.

따라서 $\triangle BDE$ 의 둘레의 길이는 $5+5+\frac{20}{3}=\frac{50}{3}$ 이다.

10. 다음 그림에서 \overline{AD} // \overline{EF} // \overline{BC} 일 때, \overline{EF} 의 길이를 구하여라.

9 cm 9 cm P 6 cm P F

정답: 8.4 cm

 $\underline{\mathrm{cm}}$

▶ 답:

 $9:15 = \overline{EP}:10$

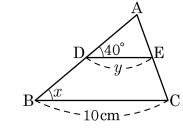
해설

 $15\overline{\text{EP}} = 90, \overline{\text{EP}} = 6(\text{cm})$ $6: \overline{\text{PF}} = 15:6$

 $15\overline{\mathrm{PF}} = 36, \overline{\mathrm{PF}} = 2.4(\mathrm{cm})$

 $\therefore \overline{\text{EF}} = 6 + 2.4 = 8.4 \text{(cm)}$

11. 다음 그림의 $\triangle ABC$ 에서 점 D, E 가 \overline{AB} 와 \overline{AC} 의 중점일 때, x,y 의 값은?



- ① $\angle x = 30^{\circ}, \ y = 5 \text{cm}$ ③ $\angle x = 40^{\circ}, \ y = 7 \text{cm}$
- ② $\angle x = 35^{\circ}, \ y = 7 \text{cm}$ $40^{\circ}, y = 5 \text{cm}$
- \bigcirc $\angle x = 45^{\circ}, y = 7$ cm

△ADE 와 △ABC 에서

 $\overline{AD}:\overline{AB}=\overline{AE}:\overline{AC}=1:2$

∠A 공통이므로 △ADE ∽ △ABC이다. $\angle x = \angle {
m ADE} = 40^\circ$ 이고 점 D, E 는 각 변의 중점이므로 y =

 $\frac{1}{2} \times 10 = 5$

12. 닮음비가 4:5인 두 정사각형이 있다. 이 두 정사각형의 둘레의 합이 $72\mathrm{cm}$ 일 때, 작은 정사각형의 한 변의 길이를 $a\,\mathrm{cm}$, 큰 정사각형의 한 변의 길이를 b cm 라고 하자. a + b의 값은?

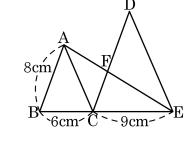
① 8 ② 10

③ 18 ④ 32 ⑤ 40

해설

두 정사각형의 둘레의 합이 72cm 이므로 작은 정사각형의 둘레 는 $72 \times \frac{4}{9} = 32$ (cm), 큰 정사각형의 둘레는 $72 \times \frac{5}{9} = 40$ (cm) 이다. 따라서 한 변의 길이는 각각 $a=8,\ b=10$ 이다. $\therefore a + b = 8 + 10 = 18$

13. 다음 그림에서 $\triangle ABC \hookrightarrow \triangle DCE$ 이고, 점 C는 \overline{BE} 위에 있다. $\overline{AB}=8$ cm, $\overline{BC}=6$ cm, $\overline{CE}=9$ cm 일 때, \overline{DF} 의 길이는?



4 8cm

① 6cm

⑤ 8.2cm

② 6.8cm

③7.2cm

 $\angle FCE(\because$

 $\triangle ABC$ \hookrightarrow $\triangle DCE$ 이므로 \overline{AB} : $\overline{DC} = \overline{BC}$: \overline{CE} 8: $\overline{DC} = 6$: 9이므로 $\overline{DC} = 12$ (cm)

해설

ΔEAB 와 ΔEFC 에서 ∠E 는 공통, ∠B ΔABC∽ΔDCE)

△ABC∽△DCE) △EAB∽△EFC (AA 닮음)

 $\overline{\mathrm{EB}}:\overline{\mathrm{EC}}=\overline{\mathrm{AB}}:\overline{\mathrm{FC}}$ 이므로 $15:9=8:\overline{\mathrm{CF}}$ $\overline{\mathrm{CF}}=4.8(\,\mathrm{cm})$

 $\therefore \overline{DF} = 4.8 \text{ cm}$ $\therefore \overline{DF} = 12 - 4.8 = 7.2 \text{ cm}$

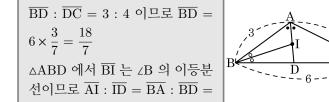
14. 다음 그림에서 점 I는 내심이다. $\overline{AB}=3$, $\overline{AC}=4$, $\overline{BC}=6$ 일 때, $\overline{\mathrm{AI}}:\overline{\mathrm{ID}}$ 를 구하면?

② 5:3 36:5

① 4:3 ⑤ 8:5

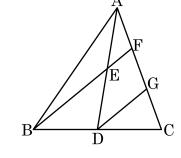
47:6

해설



$$3: \frac{18}{7} = 7:6$$

15. $\triangle ABC$ 에서 점 E 는 중선 AD 의 중점이고, 점 F, G 는 선분 AC 의 삼등분점일 때, 선분 BE 의 연장선은 점 F 를 지난다. 선분 DG 가 4cm 일 때, 선분 BE 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 6 cm

답:

△CDG 와 △BFC 를 보면,

중점연결 정리의 의해 $\overline{\mathrm{CG}} = \overline{\mathrm{GF}}, \ \overline{\mathrm{CD}} = \overline{\mathrm{BD}}$

 $\overline{\mathrm{DG}} = \frac{1}{2}\overline{\mathrm{BF}}$

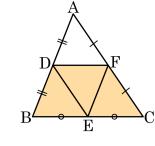
또한 △AEF 와 △ADG 를 보면, 중점연결 정리에 의해

 $\overline{EF} = \frac{1}{2}\overline{DG}$

 $\overline{DG} = \frac{1}{2}(\overline{BE} + \overline{EF}) = \frac{1}{2}(\overline{BE} + \frac{1}{2}\overline{DG})$ $\Rightarrow 4 = \frac{1}{2}(\overline{BE} + 2)$

 $\therefore \overline{BE} = 6cm$

16. 다음 그림에서 점 D, E, F는 각각 \overline{BC} , \overline{CA} , \overline{AB} 의 중점이다. $\triangle ADF$ 의 넓이가 5cm² 일 때, □BDFC의 넓이는?



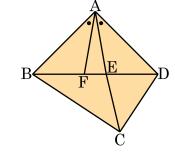
 415cm^2

- $2 13 \text{cm}^2$ \bigcirc 16cm^2
- $3 14 \text{cm}^2$

 $\triangle ADF \equiv \triangle BED \equiv \triangle DEF \equiv \triangle FEC$ (SSS 합동) 이므로 $\triangle ABC$

의 넓이는 $4 \times \triangle ADF = 4 \times 5 = 20(cm^2)$ 이다. 따라서 $\square BDFC$ 의 넓이는 $20-5=15(cm^2)$ 이다.

17. 다음 그림과 같이 $\overline{AB} = \overline{AD} = 12$ 인 $\triangle ABD$ 에서 $\angle BAE = \angle DAF$ 이고 $\overline{AE} = \overline{DF} = 9$, $\overline{CE} = 7$, $\overline{DE} = 7$ 일 때, $\overline{AD} \times \overline{CD}$ 를 구하여라.



▷ 정답: 112

답:

△ABD 가 이등변삼각형이므로

∠ABD = ∠ADB 조건에서

 $\overline{AB} = \overline{AD} = 12$, $\angle BAE = \angle DAF$ 이므로

 $\triangle ABE \equiv \triangle ADF (ASA 합동)$

그러므로 $\overline{AE} = \overline{AF} = 9$ $\triangle ABE$ 와 $\triangle ADB$ 에서 $\overline{AB}:\overline{BD}=12:16=3:4$

 $\overline{\mathrm{AE}}:\overline{\mathrm{AB}}=9:12=3:4$ 이고 $\angle\mathrm{ABD}$ 는 공통이므로 △ABE ∽ △DBA (SAS 닮음)

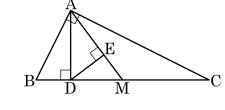
 $\triangle AED$ 와 $\triangle ADC$ 에서 $\overline{AD}:\overline{AC}=12:16=3:4$, $\overline{AE}:\overline{AD}=$ 9 : 12 = 3 : 4 이고 ∠CAD 는 공통.

△AED ∽ △ADC (SAS 닮음) $\overline{\mathrm{DE}}:\overline{\mathrm{CD}}=3:4$ 이므로 $7:\overline{\mathrm{CD}}=3:4$

따라서 $\overline{\text{CD}} = \frac{28}{3}$ 이므로

 $\overline{\mathrm{AD}} imes \overline{\mathrm{CD}} = 12 imes rac{28}{3} = 4 imes 28 = 112$ 이다.

18. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{BM}=\overline{CM}$ 이고, 점 A 에서 내린 \overline{BC} 에 내린 수선의 발을 D , 점 D 에서 \overline{AM} 에 내린 수선의 발을 E 라 하고, $\overline{\mathrm{BD}}=6,\ \overline{\mathrm{DC}}=24$ 일 때 $\overline{\mathrm{DE}}$ 의 길이를 구하여라.



ightharpoonup 정답: $rac{36}{5}$

답:

조건에서 ∠ADB = 90°, ∠BAD = ∠ACD 이므로 △ABD ∽ △CAD (AA 닮음) 따라서 $\overline{AB}:\overline{CA}=\overline{BD}:\overline{AD}=\overline{AD}:\overline{CD}$ 를 이용하여 \overline{AD} 를

구하면 $6:\overline{\mathrm{AD}}=\overline{\mathrm{AD}}:24$

 $\overline{AD} = 12 \ (\because \overline{AD} > 0)$

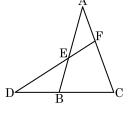
 $\angle A$ 가 90° 이므로 $\triangle ABC$ 는 직각삼각형이다. $\triangle ABC$ 의 빗변의 중심 M 은 곧 \triangle ABC 의 외심이므로

 $\overline{\mathrm{AM}} = \overline{\mathrm{BM}} = \overline{\mathrm{CM}} = 15$ $\overline{\mathrm{DM}} = \overline{\mathrm{BM}} - \overline{\mathrm{BD}} = 15 - 6 = 9$ $\angle AED = 90^{\circ}$, $\angle AMD = \angle ADE$ 이므로 $\triangle ADE$ \bigcirc $\triangle AMD$ (AA

따라서 $\overline{AD}:\overline{AM}=\overline{DE}:\overline{MD}=\overline{AE}:\overline{AD}$ 를 이용하여 \overline{DE} 를

구하면 $12:15 = \overline{DE}:9$ 이므로 $\overline{DE} = \frac{12 \times 9}{15} = \frac{36}{5}$ 이다.

19. 다음 그림에서 \overline{AE} : $\overline{EB} = 3$: 2, \overline{AF} : $\overline{FC} =$ 2:3 이다. $\overline{BC}=18\,\mathrm{cm}$ 일 때, \overline{BD} 의 길이 를 구하여라.



▶ 답:

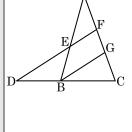
해설

 $\underline{\mathrm{cm}}$

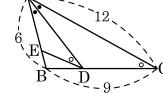
ightharpoonup 정답: $\frac{72}{5}$ $\underline{\mathrm{cm}}$

 $\overline{\mathrm{EF}} \ /\!/ \ \overline{\mathrm{BG}}$ 인 $\overline{\mathrm{BG}}$ 를 그으면 $\overline{\mathrm{AE}} : \overline{\mathrm{EB}} = \overline{\mathrm{AF}} : \overline{\mathrm{FG}} = 3 : 2 = 6 : 4$ $\overline{\rm AF}:\overline{\rm FC}=2:3=6:9$

즉 \overline{AF} : \overline{FG} : $\overline{GC} = 6:4:5$ $\overline{BC} : \overline{BD} = \overline{CG} : \overline{GF} = 5 : 4$ $18 : \overline{BD} = 5 : 4$ $\therefore \overline{DB} = \frac{72}{5} \text{ (cm)}$



20. 다음 그림과 같이 $\overline{AB}=6,\ \overline{BC}=9,\ \overline{AC}=12$ 인 $\triangle ABC$ 에서 $\angle A$ 의 이등분선과 \overline{BC} 의 교점을 D 라 하고, \overline{AB} 위에 $\angle ADE = \angle ACB$ 가 되도록 점 E 를 잡는다. 이 때, $\triangle BDE$ 는 $\triangle ADE$ 의 몇 배인지 구하여라.



배

▶ 답: ightharpoonup 정답: $rac{1}{3}$ 배

 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$ 이므로

 $6:12=\overline{BD}:(9-\overline{BD})$ $\therefore \overline{BD} = 3, \overline{CD} = 9 - 3 = 6$

△BDE ∽ △BAD (AA 닮음)이므로 $\overline{\mathrm{BD}}:\overline{\mathrm{BA}}=\overline{\mathrm{BE}}:\overline{\mathrm{BD}}$

 $3:6 = \overline{BE}:3$ $\therefore \overline{BE} = \frac{3}{2}, \ \overline{AE} = 6 - \frac{3}{2} = \frac{9}{2}$

이 때, $\triangle BDE = a$ 라 하면

 $\triangle BDE : \triangle ADE = \overline{BE} : \overline{AE}$ 에서

 $a : \triangle ADE = \frac{3}{2} : \frac{9}{2} = 1 : 3$ ∴ $\triangle ADE = 3a$ 따라서 $\triangle BDE \vdash \triangle ADE$ 의 $\frac{1}{3}$ 배이다.