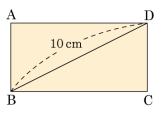
의 길이가 10 cm일 때, 이 직사각형의 가로의 길이를 구하여라. ① 4√5 cm ② 2√5 cm

다음 직사각형 ABCD 에서 가로의 길이는 세로의 길이의 2배이다. 대각선



 $3 5\sqrt{2} \text{ cm}$

해설

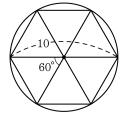
(4) $8\sqrt{5}$ cm

세로의 길이를 $x \, \text{cm}$ 라고 하면 $\sqrt{x^2 + (2x)^2} = 10$

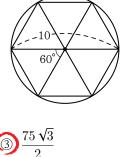
$$5x^2 = 100$$
 $x = 2\sqrt{5}\,\mathrm{cm}$ 따라서 가로의 길이는 $2x = 4\sqrt{5}\,\mathrm{cm}$ 이다.

 $3\sqrt{5}$ cm

지름이 10인 원 안에, 다음과 같이 정육각형이 내접해 있다. 이때, 정육각형의 넓이는?



$$\begin{array}{c} \textcircled{1} \quad \frac{71\sqrt{5}}{2} \\ & 77\sqrt{5} \end{array}$$



(정육각형의 넓이) = (정삼각형의 넓이)
$$\times$$
 6 이므로
$$\frac{\sqrt{3}}{4} \times 25 \times 6 = \frac{75\sqrt{3}}{2}$$

3. 다음 그림에서 $\triangle ABC$, $\triangle EAC$, $\triangle EDC$ 는 모두 직각삼각형이고, $\overline{AB} = \overline{BC} = 3$ cm, $\angle AEC = 60$ °, $\angle CED = 45$ °일 때, $\triangle EDC$ 의 넓이는?

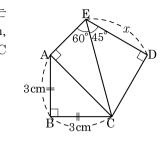
① $3 \,\mathrm{cm}^2$

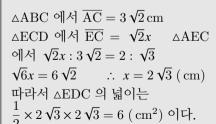
 2 4 cm^2

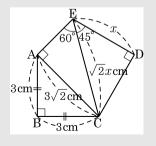
 $36 \,\mathrm{cm}^2$

 $4 \ 8 \, \mathrm{cm}^2$

 $\odot 10\,\mathrm{cm}^2$







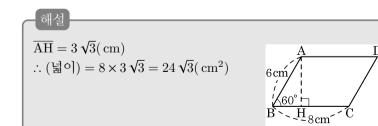
 다음 그림의 평행사변형은 두 변의 길이가
 A
 D

 각각 6 cm , 8 cm 이고 한 내각의 크기가 60°
 6cm/
 6cm/

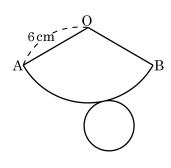
 이다.
 60°
 6cm/

 이 도형의 넓이를 구하면?
 8 cm---C

①
$$24\sqrt{3} \text{ cm}^2$$
 ② $20\sqrt{3} \text{ cm}^2$ ③ $16\sqrt{3} \text{ cm}^2$
④ $12\sqrt{3} \text{ cm}^2$ ⑤ $8\sqrt{3} \text{ cm}^2$

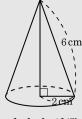


5. 다음 그림에서 호 AB 의 길이는 $4\pi cm$, $\overline{OA} = 6cm$ 이다. 이 전개도로 원뿔을 만들 때, 원뿔의 높이는?



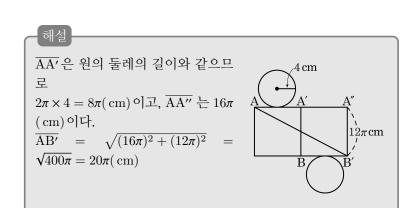
- ① $3\sqrt{2}$ cm
- \bigcirc $4\sqrt{2}$ cm \bigcirc $4\sqrt{3}$ cm (4) $5\sqrt{2}$ cm $\sqrt{3}$ $\sqrt{3}$ cm
- 해설 $6\,\mathrm{cm}$ 호 AB 의 길이, 밑면의 둘레의 길이가 $2\pi r = 4\pi$ 이므로 밑면의 반지름의 길이 r = 2(cm) 이다.

위의 전개도로 다음과 같은 원뿔이 만들어진다.

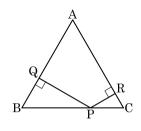


따라서 원뿔의 높이 $h = \sqrt{6^2 - 2^2} = \sqrt{36 - 4} = \sqrt{32} =$ $4\sqrt{2}$ (cm) 이다.

- 6. 다음 그림과 같이 밑면의 반지름의 길이가 4 cm, 높이가 12π cm 인 원기둥이 있다. 점 A 에서 출발 하여 원기둥의 옆면을 따라 두 바퀴 돌아서 점 B 에 이르는 최단 거리를 구하면?
 - ① $12\pi \,\mathrm{cm}$ ② $20\pi \,\mathrm{cm}$ ③ $24\pi \,\mathrm{cm}$ ④ $26\pi \,\mathrm{cm}$ ⑤ $30\pi \,\mathrm{cm}$



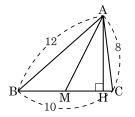
다음 그림의 정삼각형 ABC 는 한 변의 길이가 $2 \, \mathrm{cm}$ 이고 점 P 는 변 BC 위의 임의의점이다. 점 P 에서 \overline{AB} , \overline{CA} 에 내린 수선의발을 각각 Q, R 라고 할 때, $(\overline{PQ} + \overline{PR})^2$ 의 값을 구하여라.



정삼각형 ABC 의 넓이는
$$\frac{\sqrt{3}}{4} \times 2^2 = \sqrt{3} \text{ (cm}^2)$$

 $\triangle ABC = \triangle ABP + \triangle ACP$
 $\sqrt{3} = \frac{1}{2} \times 2 \times \overline{PQ} + \frac{1}{2} \times 2 \times \overline{PR}, \overline{PQ} + \overline{PR} = \sqrt{3}$
 $\therefore (\overline{PQ} + \overline{PR})^2 = 3$

다음 그림의 삼각형 ABC 에서 점 A 에서 BC 에 내린 수선의 발을 H 라 하고, 점 M 은 BC 의 중점일 때, MH + AH 의 길이는?



 $4 + 3\sqrt{7}$

②
$$2 + \sqrt{7}$$

③ $5 + \sqrt{7}$

$$3 + 2\sqrt{7}$$

해설
$$B = a$$

$$\overline{MH} = a$$

$$12^2 - (5+a)^2 = 8^2 - (5-a)^2$$

 $144 - (25+10a+a^2) = 64 - (25-10a+a^2), \ 20a = 80, \ a = 4$
따라서 $\overline{\text{MH}} = a = 4, \ \overline{\text{AH}} = \sqrt{8^2 - 1^2} = \sqrt{63} = 3\sqrt{7}$

이므로 $\overline{\text{MH}} + \overline{\text{AH}} = 4 + 3\sqrt{7}$

9. 이차함수 $y = -\frac{1}{4}x^2 + 2x - 1$ 의 그래프의 꼭짓점과 y 축과의 교점, 그리고 원점을 이어 삼각형을 만들었다. 이 삼각형의 둘레의 길이가 $a + b\sqrt{c}$ 일 때, a + b + c 의 값은?(단, a,b,c는 유리수, c는 최소의 자연수)

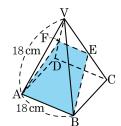
$$y = -\frac{1}{4}x^2 + 2x - 1$$

$$y = -\frac{1}{4}(x - 4)^2 + 3 \text{ 이므로}$$
꼭짓점의 좌표는 $(4, 3)$ 이다.
$$y 축과의 교점은 x 좌표가 0 일 때이므로 $(0, -1)$
따라서$$

꼭짓점 - 원점의 거리

꼭짓점-y 축과의 교점의 거리 = $\sqrt{(4-0)^2 + (3-(-1))^2} = 4\sqrt{2}$:. 삼각형의 둘레= $6+4\sqrt{2}$ 이므로 a+b+c 의 값은 12 이다.

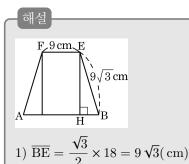
 $= \sqrt{(4-0)^2 + (3-0)^2} = 5$ v 축과의 교점-원점의 거리 = 1 **10.** 다음 그림과 같이 밑면이 한 변의 길이가 $18 \, \text{cm}$ 인 정사각형이고 옆면의 모서리의 길이가 18 cm 인 정사각뿔 V - ABCD 에서 \overline{VC} , \overline{VD} 의 중 점을 각각 E, F 라고 할 때, □ABEF 의 넓이 는?



①
$$81\sqrt{11}\,\mathrm{cm}^2$$

$$243\sqrt{11}$$
 cm²

③
$$\frac{243\sqrt{15}}{2}$$
 cm² ④ $135\sqrt{11}$ cm²
⑤ $\frac{325\sqrt{15}}{2}$ cm²



2)
$$\overline{BH} = \frac{(18-9)}{2} = \frac{9}{2} (\text{cm})$$

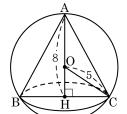
3)
$$\overline{\rm EH} = \sqrt{(9\sqrt{3})^2 - \left(\frac{9}{2}\right)^2} = \frac{9\sqrt{11}}{2} (\,{\rm cm})$$

$$\therefore \Box ABEF = \frac{1}{2} \times \frac{9\sqrt{11}}{2} \times 27 = \frac{243\sqrt{11}}{4} (\text{cm}^2)$$

11. 다음 그림과 같이 반지름의 길이가 5 인 구에 내접해 있는 원뿔의 부피를 구하면?

①
$$\frac{74}{3}\pi$$
 ② $\frac{86}{3}\pi$

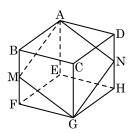
 $\frac{92}{3}\pi$ 3 $\frac{92}{3}\pi$



구의 반지름이 5 이므로 $\overline{\mathrm{OH}}=3$ 이고 $\overline{\mathrm{CH}}=4$ 이다.

따라서 원뿔의 부피는 $\pi \times 4^2 \times 8 \times \frac{1}{3} = \frac{128}{3} \pi$ 이다.

12. 다음 그림과 같이 한 모서리의 길이가 8 cm 인 정육면체에서 두 점 M, N 은 각각 모서리 BF, DH 의 중점일 때, □AMGN 의 넓이는?



①
$$32 \, \text{cm}^2$$

$$\bigcirc$$
 64 cm²

$$32\sqrt{6} \text{ cm}^2$$

 $64\sqrt{6} \text{ cm}^2$

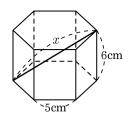
$$\overline{AM} = \overline{MG} = \overline{GN} = \overline{AN} = \sqrt{8^2 + 4^2} = 4\sqrt{5} \text{ cm 이므로}$$

 \square AMGN은 마름모이다. $\overline{AG} = \sqrt{8^2 + 8^2 + 8^2} = 8\sqrt{3} \text{ (cm)}$

$$\overline{\text{MN}}//\overline{\text{BD}}, \overline{\text{MN}} = \overline{\text{BD}} = \sqrt{8^2 + 8^2} = 8\sqrt{2}(\text{cm})$$

$$\therefore$$
 \square AMGN= $8\sqrt{3} \times 8\sqrt{2} \times \frac{1}{2} = 32\sqrt{6} (\text{cm}^2)$ 이다.

13. 다음 그림과 같이 밑면은 한 변의 길이가 5cm 인 정육각형이고, 높이가 6cm 인 정육각기둥 에서 x의 길이를 구하면 ?



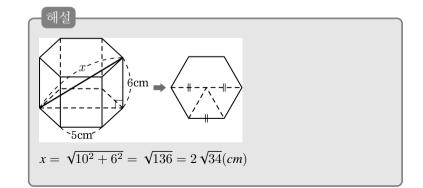
① $2\sqrt{17}$ cm

 $2\sqrt{34}$ cm

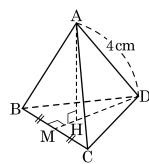
 $3 2\sqrt{43}$ cm

④ $17\sqrt{2}$ cm

 \bigcirc 17 $\sqrt{3}$ cm



14. 다음 그림과 같이 한 모서리의 길이가 4cm 인 정사면체의 꼭짓점 A 에서 밑면에 내린 수선의 발을 H 라 할 때, DM 의 길이, DH 의 길이, AH 의 길이를 차례로 나열한 것은?



 $(\overline{\rm CD})^2 = (\overline{\rm MC})^2 + (\overline{\rm DM})^2$, $(\overline{\rm DM})^2 = 16-4 = 12$, $\overline{\rm DM} =$

①
$$\sqrt{3}$$
cm, $\frac{2\sqrt{3}}{3}$ cm, $\frac{4\sqrt{6}}{3}$ cm.

②
$$\sqrt{3}$$
cm, $\frac{4\sqrt{3}}{3}$ cm, $\frac{4\sqrt{6}}{3}$ cm.
③ $2\sqrt{3}$ cm, $\frac{2\sqrt{3}}{3}$ cm, $\frac{4\sqrt{6}}{3}$ cm.

$$\frac{3}{4}$$
 2 $\sqrt{3}$ cm, $\frac{4\sqrt{3}}{3}$ cm, $\frac{4\sqrt{6}}{3}$ cm.

(4)
$$2\sqrt{3}$$
 cm, $\frac{1\sqrt{6}}{3}$ cm, $\frac{1\sqrt{6}}{3}$ cm.
(5) $2\sqrt{3}$ cm, $\frac{5\sqrt{3}}{3}$ cm, $\frac{4\sqrt{6}}{3}$ cm.

$$2\sqrt{3} \text{ (cm)}$$

$$\boxed{\text{DH}} \quad 2\sqrt{2} \times 2 \quad 4\sqrt{3} \text{ (cm)}$$

$$\overline{DH} = 2\sqrt{3} \times \frac{2}{3} = \frac{4\sqrt{3}}{3} (\text{cm})$$

$$(\overline{AH})^2 = (\overline{AD})^2 - (\overline{DH})^2 = 16 - \frac{48}{9} = \frac{96}{9} = \frac{32}{3}, \overline{AH} = \frac{4\sqrt{6}}{3}$$
 cm.

ho ho

15. 다음 그림과 같이 모선의 길이가 12cm 이고, 밑면인 원의 반지름의 길이가 3cm 인 원뿔에서 모선 AB 의 중점을 M 이라 하자. 점 B 에서

 $12\,\mathrm{cm}$

원뿔의 옆면을 따라 점 M 에 이르는 최단 거리를 구하면?

 $\bigcirc 6\sqrt{2}\,\mathrm{cm}$ (4) $5\sqrt{3}$ cm 해설 전개했을 때 부채꼴의 중심각을 x 라 하면, 부채꼴의 호의 길이와 밑면의 둘레의 길이가 같으므로 $2\pi \times 12 \times \frac{x}{360} = 2\pi \times 3$ $\therefore x = 90^{\circ}$ 6cm 12 cm B

 \therefore 최단 거리 $\overline{\mathrm{BM}}=\sqrt{12^2+6^2}=6\,\sqrt{5}(\,\mathrm{cm})$ 이다.