1. 연립부등식 $\begin{cases} 2x + 3 > -3 + x & \text{의 해를 구하여라.} \\ 5x + 1 \le 3x - 1 & \text{number of the proof of the p$

답: _____

수직선 위의 두 점 $\mathbf{A}(a),\mathbf{B}(b)(a>b)$ 사이의 거리 $\overline{\mathbf{AB}}$ 는 5이고 점 2. C(a+b)의 좌표를 -1이라 할 때, 점 D(a-b)의 좌표는?

① 4 ② 5 ③ 6 ④ 7 ⑤ 8

3. 세 직선 x + 2y = 5, 2x - 3y = 4, ax + y = 0이 삼각형을 이루지 못할 때, 상수 a의 값들의 곱은? ① $-\frac{1}{3}$ ② $-\frac{3}{23}$ ③ $-\frac{1}{23}$ ④ $\frac{2}{23}$ ⑤ $\frac{1}{3}$

4. 연립부등식 $\begin{cases} x > a \\ x - 1 \le 3 \end{cases}$ 의 해집합이 공집합이 되기 위한 a 의 값 중 가장 작은 값을 구하여라.

▶ 답: ____

5. 부등식 3|x-1|+2|x+1| < 6을 풀면?

① x > -1 ② $x < \frac{7}{5}$ ③ $1 \le x < \frac{7}{5}$ ④ $-1 < x < \frac{7}{5}$ ⑤ $-3 \le x < -1$

6. 이차부등식 $x^2 - |x| - 6 < 0$ 의 해가 a < x < b일 때, $a^2 + b^2$ 의 값을 구하여라.

① 5 ② 10 ③ 13 ④ 16 ⑤ 18

7. 세 점 A(2, 5), B(-1, 0), C(4, 1)을 꼭짓점으로 하는 △ABC에서 변 BC 위의 점 M에 대하여 $\triangle ABM = \triangle ACM$ 일 때, $\overline{AM}^2 + \overline{BM}^2$ 의 값은?

① 25 ② 27 ③ 29 ④ 31 ⑤ 33

8. 세 점 A(0, a), B(b, 2), C(-1, -b)를 꼭짓점으로 하는 \triangle ABC 의무게중심 G 의 좌표가 (a-4, 1) 일 때, a+b 의 값은?

① -9 ② -5 ③ 0 ④ 9 ⑤ 5

- 9. 다음 직선 l 과 평행하면서 점 (-2, 2) 를 지나는 직선의 방정식은 y = ax + b 이다. 이때, a + b의 값은 ?
 - ① -4 **④** −1
- ② -3 ⑤ 0
- ③ -2

 $\begin{array}{c|c}
O & 1 & x \\
y = ax + b
\end{array}$

- 10. 다음 두 직선 y = (2a+1)x-a+2, y = (a+2)x+2 가 서로 수직일 때, a 의 값을 모두 구하여라.
 답:
 - ______ 답:
 - ____

11. 두 원 $x^2 + y^2 = 2$ 과 $(x - a)^2 + (y - a)^2 = 2$ 이 만나지 않을 때, 실수 a의 값의 범위는 a < p 또는 a > q이다. 이때, p + q의 값을 구하여라.

답: _____

12. 다음 원과 직선의 교점의 개수를 구하여라.

 $x^2 + y^2 - 2x + 4y + 1 = 0$, 3x - 4y + 6 = 0

답: _____ 개

13. 원 $(x-4)^2 + (y-3)^2 = 25$ 위의 점 C에서 두 점 A(6, -4), B(10, 0)을 지나는 직선 l에 이르는 거리의 최댓값은?

① $5 + 4\sqrt{2}$ ② $5 + \frac{9}{2}\sqrt{2}$ ③ $10 + \sqrt{2}$

⑤ 12 4 11

14. 좌표평면 위의 두 점 A(8,0) , B(0,6) 에 대하여 삼각형 OAB 의 외접 원의 방정식이 $x^2+y^2+ax+by+c=0$ 일 때, 세 상수 a,b,c 의 곱 abc 의 값을 구하여라. (단, O 는 원점)

답: _____

15. 이차방정식 $x^2 + y^2 = 2 \mid x \mid$ 과 $x^2 + y^2 = 2 \mid x + y \mid$ 의 공통근의 개수를 구하여라.

답: 5 _____ 개

16. 직선 y = ax + b 를 평행이동 $f: (x, y) \to (x - 1, y + 2)$ 에 의하여 옮겼더니 직선 y = 2x + 3 과 y축 위에서 직교할 때, a - b 의 값을 구하여라.

달: _____

17. 점 A (a,b) 를 x 축의 방향으로 3 만큼, y 축의 방향으로 2 만큼 평행이동한 점을 다시 직선 y = x 에 대하여 대칭이동한 점을 B 라고하면 두 점 A,B 를 지나는 직선은 x 축에 평행하다. 이때, 선분 AB의 길이는?

① 3 ② 4 ③ 5 ④ 6 ⑤ 7

18. 직선 y = -2x + 4 에 대하여 원 $(x - 1)^2 + (y + 3)^2 = 5$ 과 대칭인 도형의 방정식을 구하면?

- ① $(x-5)^2 + (y+1)^2 = 5$ ② $(x+5)^2 + (y+1)^2 = 5$ ③ $(x+5)^2 + (y-1)^2 = 5$ ④ $(x-5)^2 + (y-1)^2 = 5$
- $(x-5)^2 + (y+1)^2 = 25$

19. x에 대한 이차함수 $y = (a-3)x^2 - 2(a-3)x + 3$ 의 값이 모든 실수 x에 대하여 항상 양이 되는 실수 a의 값의 집합을 A라 하고, 항상 음이 되는 실수 a 의 값의 집합을 B 라 할 때, A \cup B는?

① $\{a \mid a < 6\}$

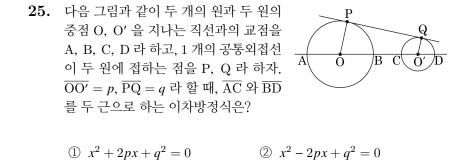
- $\textcircled{4} \ \{a \mid 3 \leq a \leq 6\} \qquad \textcircled{5} \ \{a \mid a > 3\}$
- ② $\{a \mid a \le 6\}$ ③ $\{a \mid 3 < a < 6\}$

- **20.** $\alpha < 0 < \beta$ 이고 이차부등식 $ax^2 + bx + c < 0$ 의 해가 $\alpha < x < \beta$ 일 때, 이차부등식 $cx^2 + bx + a < 0$ 의 해는?
 - ① $\frac{1}{\alpha} < x < \frac{1}{\beta}$ ② $\frac{1}{\beta} < x < \frac{1}{\alpha}$ ③ $x < \frac{1}{\alpha} \stackrel{\text{L}}{=} x > \frac{1}{\beta}$ ④ $x < \frac{1}{\beta} \stackrel{\text{L}}{=} x > \frac{1}{\alpha}$
 - ⑤ b 의 부호에 따라 다르다.

 ${f 21}$. $(a,\ b)$ 가 직선 x+y=1위를 움직이는 점이라 할 때 직선 ax+by=1은 정점을 지난다. 그 정점의 좌표는?

4 (-1, -1) 5 (-1, 0)

22. 점 (3,-1) 에서 원 $x^2+y^2=5$ 에 그은 두 접선과 y축으로 둘러싸인 삼각형의 넓이를 S 라 할 때, 4S 의 값은?


① 33 ② 35 ③ 45 ④ 49 ⑤ 55

- **23.** 이차방정식 $x^2+2ax+b=0$ 의 두 근을 lpha,eta라 할 때, 이차부등식 $(4a+b+4)x^2+2(a+2)x+1<0$ 을 풀면? (단, $\alpha>\beta>2$)
 - ① $\frac{1}{\beta 2} < x < \frac{1}{\alpha 2}$ ② $\frac{1}{\alpha 2} < x < \frac{1}{\beta 2}$ ③ $x < \alpha 2, \ x > \beta 2$ ④ $x < \beta 2, \ x > \alpha 2$
 - ⑤ $\beta 2 < x < \alpha 2$

24. 점 A(3, -1)과 직선 x + y - 3 = 0 위의 점 P를 연결하는 선분의 중점의 자취의 방정식은?

(3) 2x - y - 5 = 0 (4) x + y - 5 = 0

① x + 2y - 5 = 0 ② 2x - 2y + 5 = 0

- $3 x^2 px + q = 0$