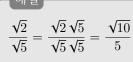

1. 16 의 제곱근 중 작은 수와 121 의 제곱근 중 큰 수의 합을 구하면?

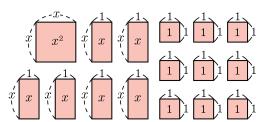
4 15

(5) 20


 \bigcirc -7

2 4

2.
$$\frac{\sqrt{2}}{\sqrt{5}}$$
 의 분모를 유리화한 것으로 옳은 것은?


 $\bigcirc \frac{\sqrt{10}}{5}$ ② $\frac{\sqrt{2}}{5}$ ③ $\frac{2}{5}$

3.
$$2\sqrt{2} - 2\sqrt{8} + 5\sqrt{2} = a\sqrt{2}$$
 일 때, 자연수 a 의 값을 구하여라.

해결
$$2\sqrt{2}-2\sqrt{8}+5\sqrt{2}=2\sqrt{2}-4\sqrt{2}+5\sqrt{2}=3\sqrt{2}$$
이다. 따라서 $a=3$ 이다.

4. 다음 그림의 모든 직사각형의 넓이의 합과 넓이가 같은 정사각형의 한 변의 길이는?

①
$$x-3$$
 ② $x+1$ ③ $x-2$ ④ $x+3$ ⑤ $x+4$

넓이의 합은 $x^2 + 6x + 9 = (x+3)^2$ 이므로 한 변의 길이가 x+3 인 정사각형과 넓이가 같다.

5.
$$3ab^2 - 15a^2b$$
 를 인수분해한 것은?

①
$$ab(a-b)$$

4 ab(a+b)

$$\Im a^2(b^2-5b)$$

 $3ab^2 - 15a^2b = 3ab(b - 5a)$

6.
$$\frac{99 \times 145 + 99 \times 55}{199^2 - 1}$$
 의 값을 구하여라.

$$\triangleright$$
 정답: $\frac{1}{2}$

$$\frac{99 \times 145 + 99 \times 55}{199^2 - 1} = \frac{99(145 + 55)}{(199 + 1)(199 - 1)} = \frac{1}{2}$$

7. $(0.1)^2$ 의 음의 제곱근을 A , 25 의 제곱근의 개수를 B 라고 할 때, 10A + B 값을 구하여라.

> 정답: 1

▶ 답:

0.01 이고

∴ A = -0.1 25 는 양수이므로 25의 제곱근은 ±5 이고, 개수는 2개이다.

$$\Rightarrow 10A + B = 10 \times (-0.1) + 2 = -1 + 2 = 1$$

8. 다음 중 무리수인 것은?

①
$$\sqrt{3} + 4$$

②
$$\sqrt{0.49}$$
 ③ $\sqrt{9} - 2$

②
$$\sqrt{0.49} = 0.7$$
: 유리수

④
$$-\sqrt{\frac{36}{25}} = -\frac{6}{5}$$
 : 유리수

⑤
$$\sqrt{9} - 2 = 3 - 2 = 1$$
 : 유리수

- 9. $2a+8\sqrt{3}-7-4a\sqrt{3}$ 의 값이 유리수가 되도록 하는 유리수 a의 값은?
 - ① 0 ② 1 ③ 2 ④ 3 ⑤ 4

해설
$$2a+8$$

 $2a + 8\sqrt{3} - 7 - 4a\sqrt{3} = 2a - 7 + (8 - 4a)\sqrt{3}$ 주어진 식이 유리수가 되기 위해서는 8 - 4a 의 값이 0 이 되어야한다.

 $8 - 4a = 0 \qquad \therefore a = 2$

10. 분수
$$\frac{\sqrt{2}}{3-2\sqrt{2}}$$
 의 분모를 유리화 하면?

①
$$3+2\sqrt{2}$$

①
$$3 + 2\sqrt{2}$$
 ② $-3\sqrt{2} + 4$ ② $3\sqrt{2} + 4$ ③ $3\sqrt{2} - 4$

 $3 -3\sqrt{2} - 4$

$$\frac{\sqrt{2}(3+2\sqrt{2})}{(3-2\sqrt{2})(3+2\sqrt{2})} = 3\sqrt{2}+4$$

11. 다음 중 $\sqrt{2}$ 와 $\sqrt{7}$ 사이에 있는 무리수가 <u>아닌</u> 것은? (단, $\sqrt{2}=1.414$, $\sqrt{7}=2.646$)

①
$$\sqrt{2} + 1$$
 ② $\sqrt{5}$ ③ $\frac{\sqrt{2} + \sqrt{7}}{2}$ ③ $\pi - \sqrt{2}$

12. 다음 다항식이 완전제곱식이 되도록 빈칸에 알맞은 수를 써넣어라.

$$x^2 + \frac{1}{2}x + \square$$

$$\triangleright$$
 정답: $\frac{1}{16}$

해설
$$x^2+px+q$$
 일 때, p 의 $\frac{1}{2}$ 의 제곱은 q 와 같다. $q=\left(\frac{1}{2}p\right)^2$

따라서
$$\frac{1}{2}$$
 의 절반의 제곱은 $\frac{1}{16}$ 이다.

13.
$$9x^2 + Axy + 16y^2 = (Bx + Cy)^2$$
 일 때, 이를 만족하는 세 자연수 A, B, C 의 합을 구하면?

$$(Bx + Cy)^{2} = B^{2}x^{2} + 2BCxy + C^{2}y^{2}$$

$$= 9x^{2} + Axy + 16y^{2}$$

$$B^{2} = 9, \therefore B = 3$$

$$C^{2} = 16, \therefore C = 4$$

$$A = 2BC = 2 \times 3 \times 4 = 24$$

A + B + C = 24 + 3 + 4 = 31

14.
$$x^2 + \frac{1}{6}x - \frac{1}{6} = (x+a)(x+b)$$
 이고, $a > 0$ 일 때, a 의 값은?

①
$$\frac{1}{6}$$
 ② $\frac{1}{3}$ ③ $\frac{1}{2}$ ④ 2 ⑤ 3

$$x^{2} + \frac{1}{6}x - \frac{1}{6} = \left(x + \frac{1}{2}\right)\left(x - \frac{1}{3}\right)$$

$$\therefore a = \frac{1}{2}$$

15. 넓이가 다음과 같은 직사각형의 세로의 길이가 3x-3 일 때, 가로의 길이를 x 에 대한 일차식으로 나타내면?

② x+1 ③ x-3

$$(3)$$
 $x-4$ (5) $x+4$

① x - 1

해설 $3x^2 - 15x + 12 = (3x - 3) \times A$ 이므로 A = x - 4 이다.

16. $(2x-1)^2 - (x+2)^2$ 을 인수분해하면 (3x+a)(x+b)가 된다고 한다. 이 때, a-b의 값을 구하면?

$$2x-1=A, x+2=B$$
로 치환하면 $(2x-1)^2-(x+2)^2$ $=A^2-B^2=(A+B)(A-B)$ $=(2x-1+x+2)(2x-1-x-2)$ $=(3x+1)(x-3)$ $\therefore a=1,b=-3$

 $\therefore a - b = 1 + 3 = 4$

17.
$$x^2 - 6xy + 9y^2 = 0$$
일 때, $\frac{x^2 + y^2}{2xy}$ 의 값은? (단, $xy \neq 0$)

①
$$\frac{1}{3}$$
 ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$ ⑤ $\frac{5}{3}$

$$x^{2} - 6xy + 9y^{2} = 0, (x - 3y)^{2} = 0 \therefore x = 3y$$

$$\frac{x^{2} + y^{2}}{2xy} \text{ 에 } x = 3y \stackrel{=}{=} \text{ 대입하면}$$

$$\frac{x^{2} + y^{2}}{2xy} = \frac{(3y)^{2} + y^{2}}{2 \times 3y \times y} = \frac{10y^{2}}{6y^{2}} = \frac{5}{3}$$

18. -3 < x < 3 일 때, $2\sqrt{(x-3)^2} - \sqrt{4(x+3)^2}$ 을 간단히 하면?

② -2x-6

(5) 6x + 6

3 0

$$= -2x + 6 - 2x - 6$$

$$= -4x$$

19.
$$\sqrt{48a}$$
 와 $\sqrt{52-a}$ 모두 정수가 되도록 하는 양의 정수 a 의 개수는?

① 0 개 ② 1 개 ③ 2 개 ④ 3 개 ⑤ 4 개

$$\sqrt{48a} = \sqrt{2^4 \times 3 \times a} \cdots \text{ }$$

$$52 - a = 0, 1, 4, 9, 16, 25, 49 \cdots \text{ }$$

52 - a = 0, 1, 4, 9, 16, 25, 49 ··· ② ②를 만족하는 a = 52, 51, 48, 43, 36, 27, 3 이 중 ①을 만족하는 것은 3, 27, 48

20. 다음 중 옳은 것은?

- ① $\sqrt{2}$ 와 $\sqrt{3}$ 사이에는 무리수가 없다.
- ② $\frac{1}{2}$ 와 $\frac{1}{3}$ 사이에는 1 개의 유리수가 있다.
- ③ $-\frac{5}{2}$ 와 $\sqrt{3}$ 사이에는 5 개의 정수가 있다
- ④모든 실수는 수직선 위에 나타낼 수 있다.
- ⑤ 수직선 위에는 무리수에 대응하는 점이 없다.

③ $1 < \sqrt{3} < 2$ 이므로 $-\frac{5}{2}$ 와 $\sqrt{3}$ 사이에는 -2, -1, 0, 1 총 4 개의 정수가 있다.

21. 다음 중 대소 관계가 옳은 것은?

(1) $4 > \sqrt{15} + 1$

 $23 + \sqrt{5} > \sqrt{5} + \sqrt{8}$

 $3 \sqrt{2} + 1 > 3$

 $4 \quad 3 - \sqrt{2} > 4 - \sqrt{2}$

해설

① $4 > \sqrt{15} + 1$ 에서

 $4 - \sqrt{15} - 1 = 3 - \sqrt{15} < 0,$ $4 < \sqrt{15} + 1$

 $23 + \sqrt{5} > \sqrt{5} + \sqrt{8}$ 에서

 $3 + \sqrt{5} - \sqrt{5} - \sqrt{8} = 3 - \sqrt{8} > 0,$

 $\therefore 3 + \sqrt{5} > \sqrt{5} + \sqrt{8}$

③ $\sqrt{2} + 1 > 3$ 에서 $\sqrt{2} + 1 - 3 = \sqrt{2} - 2 < 0$. $\therefore \sqrt{2} + 1 < 3$

④ $3 - \sqrt{2} > 4 - \sqrt{2}$ 에서

 $3 - \sqrt{2} - 4 + \sqrt{2} = -1 < 0,$

 $\therefore 3 - \sqrt{2} < 4 - \sqrt{2}$

(3) $\sqrt{\frac{4}{5}} > \sqrt{\frac{6}{7}} \text{ old}$

 $\sqrt{\frac{4}{5}} - \sqrt{\frac{6}{7}} = \frac{\sqrt{20}}{5} - \frac{\sqrt{42}}{7}$ $= \frac{7\sqrt{20}}{35} - \frac{5\sqrt{42}}{35}$ $= \frac{\sqrt{980} - \sqrt{1050}}{25} < 0$

 $\therefore \sqrt{\frac{4}{5}} < \sqrt{\frac{6}{7}}$

22. $4\sqrt{2} - \frac{23}{2}\sqrt{6} - \sqrt{2} + \frac{11}{2}\sqrt{6} = A\sqrt{2} + B\sqrt{6}$ 이 성립할 때, A - B 의 값은? (단, A, B는 유리수이다.)

$$\sqrt{2} - \frac{23}{2}\sqrt{6} - \sqrt{2} + \frac{11}{2}\sqrt{6}$$

$$= (4-1)\sqrt{2} + -$$

$$4\sqrt{2} - \frac{23}{2}\sqrt{6} - \sqrt{2} + \frac{11}{2}\sqrt{6}$$

$$= (4-1)\sqrt{2} + \frac{-23+11}{2}\sqrt{6}$$

$$= 3\sqrt{2} - 6\sqrt{6}$$

$$A = 3, B = -6$$

$$= 9$$

23. $7 + \sqrt{13}$ 의 정수 부분을 a, 소수 부분을 b 라고 할 때, a, b 의 값을 차례대로 구하여라.

해결
3 <
$$\sqrt{13}$$
 < 4, 3 + 7 < $\sqrt{13}$ + 7 < 4 + 7

$$\therefore a = 10, b = \sqrt{13} + 7 - 10 = \sqrt{13} - 3$$

24. 어떤 이차식을 갑, 을이 다음과 같이 잘못 인수분해 했다. 처음 이차식을 바르게 인수분해하면 a(x-b)(x-c)일 때, a+b+c의 값을 구하여라.

- (1) 갑은 *x* 의 계수를 잘못 보고
- (3x-4)(x-6)으로 인수 분해 하였다.
- (2) 을은 상수항을 잘못 보고 (3x + 3)(x 7) 으로 인수분해하였다.
- 답:
- ightharpoonup 정답: a+b+c=9

갑은 $3x^2 - 22x + 24$ 에서 상수항 +24 를 맞게 보았고, 을은 $3x^2 - 18x - 21$ 에서 x 의 계수 -18 을 맞게 보았다. 따라서 $3x^2 - 18x + 24 = 3(x - 2)(x - 4)$

 $\therefore a = 3, b = 2, c = 4$

 $\therefore a+b+c=9$

25. (x+y)(x+y-1)-20 을 바르게 인수분해한 것은?

$$(x+y-5)(x+y+4)$$

②
$$(x+y-4)(x+y+5)$$

$$(x+y-5)(x+y-4)$$

$$(x - y - 4)(x - y + 5)$$

$$(x-y-5)(x-y+4)$$

$$x + y = A$$
 라고 하면
 $(x + y)(x + y - 1) - 20 = A(A - 1) - 20$

$$= A^{2} - A - 20$$

$$= (A - 5)(A + 4)$$

$$= (x + y - 5)(x + y)$$

$$= (x + y - 5)(x + y + 4)$$