- 1. a > 0 일 때, 다음 중 옳은 것은?
- $(-\sqrt{3a})^2 = 3a$

$$4 - \sqrt{4a^2} = -$$

2. 다음 중 옳지 <u>않은</u> 것은 무엇인가?

- ① a > 0 일 때, $\sqrt{9a^2} = 3a$ ② a < 0 일 때, $-\sqrt{4a^2} = 2a$
- ③a < 0 일 때, $-\sqrt{(-5a)^2} = -5a$
- ④ a > 0 일 때, $\sqrt{2a^2} = \sqrt{2}a$
- ⑤ a > 0 일 때, $-\sqrt{25a^2} = -5a$

해설

 $-\sqrt{(-5a)^2} = -\sqrt{25a^2} = -|5a| = 5a$

③ a < 0 일 때,

3. a < 0 일 때, $\sqrt{4a^2} - \sqrt{(-3a)^2} + (\sqrt{-5a})^2$ 을 간단히 하면?

① -10a ② -7a ③ -4a ④ 2a ⑤ 3a

해설 $\sqrt{4a^2} - \sqrt{(-3a)^2} + (\sqrt{-5a})^2$ $= \sqrt{(2a)^2} - \sqrt{(-3a)^2} + (\sqrt{-5a})^2$ = -2a - (-3a) + (-5a) $(\because a < 0 \circ] 므로 2a < 0, -3a > 0, -5a > 0)$ = -2a + 3a - 5a = -4a

- a < 5 일 때, $\sqrt{(a-5)^2} \sqrt{(-a+5)^2}$ 을 바르게 계산한 것은? 4.
 - ① -2a 10 ② -2a④ 2a ⑤ 2a + 10

30

 $\sqrt{(a-5)^2} - \sqrt{(-a+5)^2} = -(a-5) - (-a+5)$ = -a+5+a-5=0

5. x 의 값이 x > 0 일 때, $\sqrt{(x+1)^2} + \sqrt{(x+4)^2}$ 을 간단히 하면?

① 3 ② 2x + 5 ③ x + 5 ④ 2x

해설 $x > 0 \circ | 므로$ $\sqrt{(x+1)^2} + \sqrt{(x+4)^2} = (x+1) + (x+4)$ = 2x + 5

- 6. $\sqrt{\frac{32}{3}}x$ 가 자연수가 되기 위한 x 의 값 중 가장 큰 두 자리 자연수를 구하여라.
 - ▶ 답:

▷ 정답: 96

 $\sqrt{\frac{32}{3}x} = \sqrt{\frac{2^4 \times 2}{3}x}$ 이므로 $x = 2 \times 3 \times k^2$

 k = 4 일 때, x = 96

 x 는 가장 큰 두 자리의 자연수이므로 96 이다.

7. 자연수 x에 대하여 1 < x < 50일 때, $\sqrt{20x}$ 가 자연수가 되도록 하는 모든 x의 값을 구하여라.

▶ 답:

▶ 답:

답:▷ 정답: x = 5

▷ 정답: x = 20

▷ 정답: x = 45

 $20x = 2^2 \times 5 \times x$ 이므로 $x = 5, 2^2 \times 5, 3^2 \times 5, 2^4 \times 5 \cdots$

1 < x < 50이므로, $x = 5, 2^2 \times 5, 3^2 \times 5$ 이다.

- 8. $\sqrt{11+x}$ 가 자연수가 되도록 하는 자연수 x 의 값 중 가장 큰 두 자리 자연수는?

 - ① 5 ② 70 ③ 81 ④ 89 ⑤ 99

11 + x 가 제곱수가 되어야 한다.

해설

 $\sqrt{11+x}$ 가 자연수가 되게 하는 가장 큰 두 자리 x 값은

 $\sqrt{11 + x} = \sqrt{81} \qquad \therefore x = 70$ $\sqrt{11 + x} = \sqrt{100} \qquad \therefore x = 89$ $\sqrt{11 + x} = \sqrt{121} \qquad \therefore x = 110$

110은 세자리 수 이므로 x=89 이다.

9. 다음 5 개의 ϕ A, B, C, D, E 가 정수가 되는 ϕ 중 가장 작은 자연 수를 a, b, c, d, e 라 한다. 다음 중 <u>옳은</u> 것은?

> $A = \sqrt{4+a} , \quad B = \sqrt{5^2 + b}$ $C = \sqrt{5^2 \times 3^3 \times c}$, $D = \sqrt{160 + 2d}$

- ① a < b < c < d② a < c < b < d ③ b < a < d < c
- 4 c < d < a < b

정수가 되려면 근호 안의 수가 제곱수가 되어야 한다.

해설

A 에서 4+a=9 일 때 a 가 가장 작은 수이면서 제곱수를 만든다.

 $\therefore a = 5$ B 에서 $5^2 + b = 36$ 일 때 b 가 가장 작은 수이면서 제곱수를 만든다.

 $\therefore b = 11$ C에서 $5^2\times 3^3\times c$ 가 제곱수가 되려면 가장 작은 수는 c=3일

때 이다. D 에서 $160 + 2d = 196 (= 14^2)$ 일 때 d 가 가장 작은 수이면서 근호 안이 제곱수가 된다.

 $\therefore d = 18$

 $\therefore c < a < b < d$

10. X, Y 주사위 두 개를 던져 나온 눈의 수를 각각 x, y 라고 할 때, $\sqrt{x-y}$ 가 자연수가 될 확률을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{7}{36}$

 $\sqrt{x-y}$ 가 자연수가 되기 위해서

해설

x-y=1 또는 x-y=4 이어야 한다. (i) x - y = 1 인 경우 순서쌍

 $(x, y) \stackrel{\leftarrow}{\vdash} (6, 5), (5, 4), (4, 3), (3, 2),$

(2, 1)(ii) x-y=4인 경우 순서쌍 (x, y) 는 (6, 2), (5, 1) 이다.

따라서 (i), (ii) 에서 구하는 확률은 $\frac{7}{6 \times 6} = \frac{7}{36}$ 이다.

- **11.** 다음 중 두 수의 대소 관계가 옳지 <u>않은</u> 것은?

- ① $\sqrt{24} < 5$ ② $\sqrt{17} > 4$ ③ $4 < \sqrt{20}$ ④ $\frac{\sqrt{2}}{6} < \frac{\sqrt{3}}{6}$ ⑤ $\sqrt{0.7} < 0.7$

 $\sqrt{0.7} > \sqrt{0.49}$ 이므로 $\sqrt{0.7} > 0.7$ 이다.

- **12.** 다음 중 두 수의 대소 관계가 옳지 <u>않은</u> 것은?

 $\sqrt{0.09} < \sqrt{0.3}$ 이므로 $0.3 < \sqrt{0.3}$ 이다.

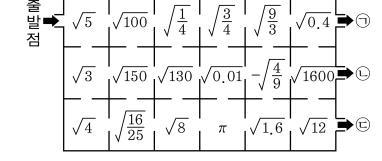
13. $\sqrt{(\sqrt{3}-1)^2} + \sqrt{(\sqrt{3}-2)^2}$ 을 계산하여라.

답:

▷ 정답: 1

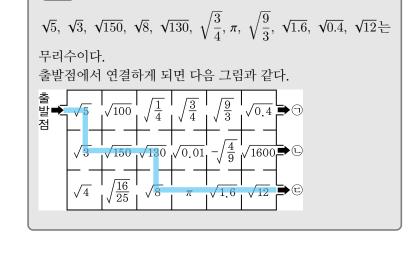
 $\sqrt{3}-1>0$ 이므로 $\sqrt{(\sqrt{3}-1)^2}=\sqrt{3}-1$ $\sqrt{3}-2<0$ 이므로 $\sqrt{(\sqrt{3}-2)^2}=-(\sqrt{3}-2)=-\sqrt{3}+2$ $\therefore \sqrt{(\sqrt{3}-1)^2}+\sqrt{(\sqrt{3}-2)^2}$ $=\sqrt{3}-1-\sqrt{3}+2=1$

14. 다음 그림에서 출발점부터 시작하여 무리수를 찾아 나가면 어느 문으로 나오게 되는지 말하여라.



▷ 정답: ⑤

답:



15. 다음 중 각 식을 만족하는 x 의 값이 무리수인 것을 $\underline{\mathsf{PF}}$ 고르면?

(3) (2), (1) ① ①,② ②,⑤ ③ ⑤,② ④ ⑤,◎

16. 다음 중 옳은 것은?

해설

- 무한소수는 무리수이다.
 유리수는 유한소수이다.
- ③ 순환소수는 유리수이다.
- ④ 유리수가 되는 무리수도 있다.
- ⑤ 근호로 나타내어진 수는 무리수이다.

① 무한소수 중 순환하는 소수는 유리수이다. ② 유리수 중에는 유한소수도 있고, 무한소수(순환소수)도 있다.

- ④ 유리수이면서 무리수가 되는 수는 없다. ⑤ $\sqrt{4}$, $\sqrt{9}$ 같은 수는 근호로 나타내었어도 유리수이다.

17. 다음 보기에서 옳은 것의 개수는? 보기

- ⊙ 모든 무한소수는 무리수이다.
- \bigcirc 0 이 아닌 모든 유리수는 무한소수 또는 유한소수로 나타낼 수 있다. ⑤ -100 은 √10000 의 제곱근이다.
- ⓐ 음이 아닌 수의 제곱근은 반드시 2개가 있고, 그 절댓값은 같다.
- ◉ 모든 유리수는 유한소수이다.

①1개

② 2개 ③ 3개 ④ 4개 ⑤ 5개

⊙ 무한소수는 순환하는 무한소수(유리수)와 순환하지 않는

- 무한소수(무리수)로 나뉜다. © $\sqrt{10000} = 100$ 의 제곱근은 ± 10 이다. ② 0 의 제곱근은 0 뿐이므로 1 개다.
- ① $\sqrt{25} = 5$
- ⓐ 유리수 중 순환소수는 무한소수이다.

18. 다음 설명 중 옳지 <u>않은</u> 것을 모두 고르면?

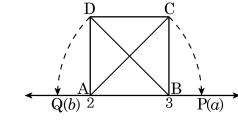
- ① 두 유리수 $\frac{1}{5}$ 과 $\frac{1}{3}$ 사이에는 무수히 많은 유리수가 있다.
- ② 두 무리수 $\sqrt{5}$ 와 $\sqrt{6}$ 사이에는 무수히 많은 무리수가 있다. ③ $\sqrt{5}$ 에 가장 가까운 유리수는 2 이다.
- ④ 서로 다른 두 유리수의 합은 반드시 유리수이지만, 서로 다른
- 두 무리수의 합 또한 반드시 무리수이다.

 ⑤ 실수와 수직선 위의 점 사이에는 일대일 대응이 이루어진다.

③ $\sqrt{4}$ 와 $\sqrt{5}$ 사이에는 무수히 많은 유리수가 존재 한다.

- ④ 두 무리수를 더해 유리수가 될 수도 있다. 예) $\sqrt{2} + (-\sqrt{2}) = 0$
- $\sqrt{2} + (-\sqrt{2}) = 0$

19. 다음 그림과 같이 수직선 위에 한 변의 길이가 1 인 정사각형 ABCD의 대각선 $\overline{AC}=\overline{AP},\;\overline{BD}=\overline{BQ}$ 인 두 점 P,Q를 수직선 위에 잡았을 때, P(a), Q(b) 에 대하여 다음 중 옳은 것은?



- \bigcirc $\overline{PQ} = -1 + 4\sqrt{2}$
- $\bigcirc Q(b) = 3 2\sqrt{2}$

(5) (**2**), (**0**)

 \bigcirc $\overline{AP} = \sqrt{2}$

- ① ①, 心

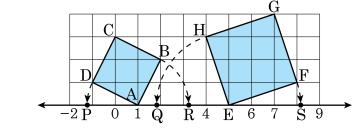
해설

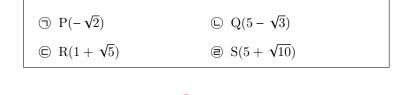
2 ¬, © 3 ©, © **4**¬, ©

20. 다음 그림과 같이 수직선 위에 한 변의 길이가 1인 정사각형 ABCD 를 그렸다. 수직선 위의 두 점 P, Q 에 대응하는 두 장표의 곱을 구하여라.

답:▷ 정답: √2

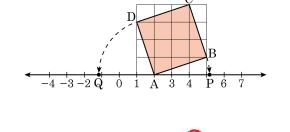
수직선 위의 두 점 P, Q 에 대응하는 두 점의 좌표는 다음과 같다. $P=2-\sqrt{2}$ $Q=1+\sqrt{2}$ $(구하는 값)=\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)$ $=2+2\sqrt{2}-\sqrt{2}-2$ $=\sqrt{2}$ **21.** 다음 그림에서 $\square ABCD$ 와 $\square EFGH$ 가 정사각형이고 $\overline{AD} = \overline{AP} = \overline{AR}$, $\overline{EH} = \overline{EQ} = \overline{ES}$ 일 때, 점 P, Q,R,S 에 대응하는 수를 바르게 짝지은 것을 모두 고르면?





해설

□ABCD의 넓이가 5이므로 한 변의 길이는 √5, □EFGH의 넓이는 10이므로 한 변의 길이는 √10 따라서 ⑦ P(1 - √5) ⓒ Q(5 - √10) ${f 22}$. 다음 그림에서 수직선 위의 점 P 와 Q 사이의 거리를 구하면? (단, 모눈 한 칸은 한 변의 길이가 1 인 정사각형이다.)



① 6 ② 8 ③ $\sqrt{10}$

 $4 2\sqrt{10}$

⑤ $3\sqrt{10}$

□ABCD 의 넓이는 (큰 정사각형 넓이)–(삼각형 네 개의 넓이의

해설

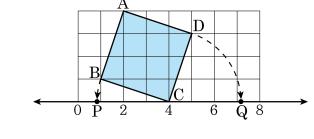
 $\square ABCD$ 의 넓이는 $16-4 \times \frac{1}{2} \times 1 \times 3 = 10$

 \therefore $\Box ABCD$ 의 한 변의 길이는 $\sqrt{10}$ 이다. $\overline{AP} = \overline{AB} = \overline{AD} = \overline{AQ} = \sqrt{10}$

점 P 는 2 보다 $\sqrt{10}$ 만큼 큰 수에 대응하는 점이다. $P(2+\sqrt{10})$

점 Q 는 2 보다 $\sqrt{10}$ 만큼 작은 수에 대응하는 점이다.Q $(2-\sqrt{10})$ $\therefore \overline{PQ} = (2 + \sqrt{10}) - (2 - \sqrt{10}) = 2\sqrt{10}$

23. $\Box ABCD$ 는 정사각형이다. 점 P, Q 를 수직선 위에 놓을 때, 좌표 $P(a), \ Q(b)$ 에 대하여 a+b 의 값을 구하여라.



답:▷ 정답: a+b=8

해설

$$P(a) = 4 - \sqrt{10}, \ Q(b) = 4 + \sqrt{10}$$
$$a + b = 4 - \sqrt{10} + 4 + \sqrt{10} = 8$$

24. 다음 보기 중 옳은 것을 모두 골라라. 보기

- ① 두 자연수 2와 3 사이에는 무수히 많은 무리수가 있다.
- \bigcirc $\sqrt{3}$ 과 $\sqrt{5}$ 사이에는 무수히 많은 유리수가 있다.
- © 수직선은 무리수에 대응하는 점으로 완전히 메울 수 있다.
- ② -2와 √2 사이에는 4개의 정수가 있다.
 ③ 1과 2사이에는 2개의 무리수가 있다.

답:

▷ 정답: ⑤

▷ 정답: □

답:

①. ○ 두 자연수 2 와 3 사이에는 무수히 많은 무리수가 있다.

②. \times -2 와 $\sqrt{2}$ 사이에는 4 개의 정수가 있다.(-1, 0, 1 3 개가 있다.)

(교) $\times \sqrt{5}$ 와 $\sqrt{7}$ 사이에는 1 개의 자연수가 있다.($\sqrt{5}$ 와 $\sqrt{7}$ 사이에는 자연수가 없다.)

. 다음 두 수의 대소를 비교한 것 중 옳은 것은?

①
$$4 > \sqrt{3} + 2$$

③ $3 > \sqrt{13}$

 $\sqrt{11} - 3 > \sqrt{11} - \sqrt{8}$

(5)
$$3 > \sqrt{13}$$

(5) $2 + \sqrt{2} > 2 + \sqrt{3}$

 $\sqrt{\frac{1}{2}} < \frac{1}{3}$

 $4 - \sqrt{3} - 2 = 2 - \sqrt{3} > 0$ $\therefore \quad 4 > \sqrt{3} + 2$ $\sqrt{11} - 3 - (\sqrt{11} - \sqrt{8}) = -3 + \sqrt{8}$ = $-\sqrt{9} + \sqrt{8} < 0$

$$\therefore \quad \sqrt{11} - 3 < \sqrt{11} - \sqrt{8}$$

(좌변)=
$$3^2 = 9$$
, (우변)= $(\sqrt{13})^2 = 13$

(좌변)=
$$\left(\sqrt{\frac{1}{2}}\right)^2 = \frac{1}{2}$$
, (우변)= $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$

$$\therefore \sqrt{\frac{1}{2}} > \frac{1}{3}$$

⑤
$$2 + \sqrt{2} - (2 + \sqrt{3}) = \sqrt{2} - \sqrt{3} < 0$$

∴ $2 + \sqrt{2} < 2 + \sqrt{3}$

26. 다음 중 두 수의 대소 관계가 올바르지 <u>않은</u> 것은?

- ① $\sqrt{3} + 3 < 2\sqrt{2} + \sqrt{3}$ ② $4 + \sqrt{3} < \sqrt{5} + 4$
- ③ $2-2\sqrt{3} < \sqrt{5}-2\sqrt{3}$ ④ $\sqrt{3}+2 > 1+\sqrt{3}$
- $5 \sqrt{3} > -\sqrt{3} + 2$

해설

① $\sqrt{3} + 3 - (2\sqrt{2} + \sqrt{3}) = 3 - 2\sqrt{2}$ $= \sqrt{9} - \sqrt{8} > 0$ $\therefore \quad \sqrt{3} + 3 > 2\sqrt{2} + \sqrt{3}$

- 27. 다음 두 수의 대소 관계를 바르게 나타낸 것은?
 - ① $3 \sqrt{3} < 5 \sqrt{5}$ ② $\sqrt{0.3} < 0.3$ ③ $4\sqrt{3} 1 < 3\sqrt{5} 1$ ④ $5 < \sqrt{3} + 3$

① $-2 < -\sqrt{3} < -1$ 이므로 $1 < 3 - \sqrt{3} < 2$ $-3 < -\sqrt{5} < -2$ 이므로 $2 < 5 - \sqrt{5} < 3$ $\therefore 3 - \sqrt{3} < 5 - \sqrt{5}$

나머지의 부등호의 바른 방향은 모두 반대 방향으로 바뀐다.

- 28. 다음 수를 작은 것부터 순서대로 나열할 때, 두 번째로 작은 수를 고르면?
 - ① $\sqrt{2}$ ② -0.5
- $31 \sqrt{2}$
- $\textcircled{4} \ 2 + \sqrt{2}$ $\textcircled{5} \ 1 + \sqrt{2}$

 $\sqrt{(1.4)^2} = \sqrt{1.96} < \sqrt{2} < \sqrt{2.25} = \sqrt{(1.5)^2}$ $1.4 < \sqrt{2} < 1.5 \Rightarrow \sqrt{2} = 1.4 \times \times \cdots$

① $\sqrt{2} = 1.4 \times \times \cdots$

- $\bigcirc -0.5$ $31 - \sqrt{2} = 1 - 1.4 \times \times \cdots = -0.4 \times \times \cdots$
- ∴ ② < ③ < ① < ⑤ < ④

29. 다음 중 보기의 주어진 식의 대소 관계가 알맞은 것은?

$$A = \sqrt{6} - 3, B = \sqrt{6} - \sqrt{5}, C = 3 - \sqrt{5}$$

- ① A > B
- ② A > C ③ B > C > A
- (4) C > A > B (5) C > B > A

 $= -\sqrt{9} + \sqrt{5} < 0$

해설

i) $\sqrt{6} - 3 - (\sqrt{6} - \sqrt{5}) = -3 + \sqrt{5}$

- ∴ A < B ii) $\sqrt{6} - \sqrt{5} - (3 - \sqrt{5}) = \sqrt{6} - 3 = \sqrt{6} - \sqrt{9} < 0$
 - ∴ B < C
- 따라서 C > B > A

30. $A = 3\sqrt{2} - 1$, $B = 2\sqrt{3} - 1$, C = 3 일 때, A, B, C 의 대소 관계를 나타내어라.

▶ 답:

해설

▷ 정답: B < C < A</p>

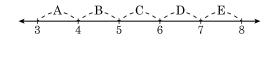
 $A = 3\sqrt{2} - 1 = \sqrt{18} - 1, \ B = 2\sqrt{3} - 1 = \sqrt{12} - 1, \ C = 3 = \sqrt{9}$ $A - C = \sqrt{18} - 1 - 3 = \sqrt{18} - 4 = \sqrt{18} - \sqrt{16} > 0$

 $\therefore A > C$ $C = P - 2 \quad (2\sqrt{2} \quad 1) = 4 \quad \sqrt{12} > 0$

 $C - B = 3 - (2\sqrt{3} - 1) = 4 - \sqrt{12} > 0$

 $\therefore C > B$ $\therefore A > C > B$

31. 다음 수직선에서 $2\sqrt{5}$ 와 $3\sqrt{5}$ 가 위치하는 구간을 바르게 짝지은 것은?



① A, B ② A, D ③ B, D ④ D, A ⑤ D, B

해설 $2\sqrt{5} = \sqrt{20}, 4 < \sqrt{20} < 5$ 이므로 B 구간 $3\sqrt{5} = \sqrt{45}, 6 < \sqrt{45} < 7$ 이므로 D 구간

32. 두 실수 $\sqrt{3}$ 과 $\sqrt{2}+1$ 사이의 무리수는 모두 몇 개인가?

 $\sqrt{3} + 0.09$, $\sqrt{3} + 0.5$, $\sqrt{2} + 0.5$ $\sqrt{2} + 0.09$, $\sqrt{2} + 0.9$, $\sqrt{3} + 0.7$

① 2 ② 3

34 **4 5 5 6**

 $\sqrt{2} = 1.414, \quad \sqrt{3} = 1.732$ $\sqrt{3} < x < \sqrt{2} + 1 \rightarrow 1.732 < x < 2.414$

 $\sqrt{2} + 0.09 = 1.414 + 0.09 = 1.504$

 $\sqrt{3} + 0.7 = 1.732 + 0.7 = 2.432$

33. 다음 중 옳지 <u>않은</u> 것은?

- ① √3과 √10 사이의 실수는 무수히 많다.
 ② √3과 √10 사이의 정수는 2개이다.
- ③ $\sqrt{3}$ 과 $\sqrt{10}$ 사이의 유리수는 유한개이다.
- ④ $\sqrt{3}$ 과 $\sqrt{10}$ 사이의 무리수 x는 무수히 많다.
- ⑤ $\frac{\sqrt{3}+\sqrt{10}}{2}$ 는 $\sqrt{3}$ 과 $\sqrt{10}$ 사이에 있는 무리수이다.
 - 해설

$\sqrt{3}$ 과 $\sqrt{10}$ 사이의 정수는 $\sqrt{4}=2,\ \sqrt{9}=3$ 의 2 개이고, 유리

수와 무리수는 무수히 많다.

- **34.** 다음 설명 중 옳지 <u>않은</u> 것은? (단, a > 0)
 - ②a 의 제곱근은 \sqrt{a} 이다.

① 0 의 제곱근은 1 개이다.

- a Allete Va
- ③ 제곱근 a는 √a 이다.
 ④ x² = a 이면 x 는 ± √a 이다.
- ⑤ 제곱근 $a^2 \in a$ 이다.

② a 의 제곱근은 $\pm \sqrt{a}$ 이다.

해설

35. 반지름의 길이의 비가 1:3 인 두 원이 있다. 이 두 원의 넓이의 합이 $40\pi {\rm cm}^2$ 일 때, 작은 원의 반지름의 길이는 몇 cm 인가?

① 1cm ② 2cm ③ 3cm ④ 4cm ⑤ 5cm

작은 원의 반지름을 r라고 하면, 큰 원의 반지름은 3r이다. (두 원의 넓이의 합)= $\pi r^2 + \pi (3r)^2 = 10\pi r^2 = 40\pi\,\mathrm{cm}^2$

 $\therefore r = 2 \,\mathrm{cm} \,\left(\because r > 0\right)$

해설

 $r^2 = 4$

36. 다음 보기의 수를 각각 제곱근으로 나타낼 때, 근호를 사용하지 않아도 되는 것을 모두 고르면?

(의 $\sqrt{(-3)^2} = 3$ 이므로 3 의 제곱근은 $\pm \sqrt{3}$ 이다. (의 (1.6 의 제곱근) $= \pm \sqrt{1.6}$ (1.6 은 제곱수가 아니다.) (의 $\left(\frac{81}{6}$ 의 제곱근) $= \pm \frac{9}{\sqrt{6}}$

,

37. 25 의 음의 제곱근과 어떤 수의 양의 제곱근을 더하였더니 -1 이되었다. 어떤 수는?

① 4 ② 9 ③ 16 ④ 36 ⑤ 49

25 의 음의 제곱근: -5 -5+==-1, ==4 4는 16 의 양의 제곱근

38. 두 실수 a, b 에 대하여 a-b<0, ab<0 일 때, $\sqrt{a^2}+\sqrt{b^2}-\sqrt{(-a)^2}+\sqrt{(-b)^2}$ 을 간단히 한 것은?

① 0 ② 2a ③ a-b ④ 2b ⑤ a+b

해설

ab < 0 이면 a와 b의 부호가 다르다. a - b < 0 이면 a < b 이므로 a < 0, b > 0 이다. a < 0 이므로 $\sqrt{a^2} = -a$, b > 0 이므로 $\sqrt{b^2} = b$ a < 0 이므로 $\sqrt{(-a)^2} = \sqrt{a^2} = -a$ b > 0 이므로 $\sqrt{(-b)^2} = \sqrt{b^2} = b$ 따라서 $\sqrt{a^2} + \sqrt{b^2} - \sqrt{(-a)^2} + \sqrt{(-b)^2}$ = -a + b - (-a) + b= 2b **39.** 3x-y=12 일 때, $\sqrt{5x+y}$ 가 자연수가 되게 만드는 가장 작은 자연수 *x* 를 구하여라.

▶ 답: ▷ 정답: 2

 $3x - y = 12 \implies y = 3x - 12$ $\sqrt{5x + y} = \sqrt{5x + 3x - 12} = \sqrt{8x - 12}$

 $\sqrt{8x-12} = 1 \implies 8x-12 = 1, \ x = \frac{13}{8}$ (x 는 자연수가 아니다.) $\sqrt{8x-12}=2 \Rightarrow 8x-12=4, x=2$ 따라서 x=2이다.

40. 다음 수 중 가장 작은 수를 x, 가장 큰 수를 y 라고 할 때 $x^2 + y^2$ 의 값을 구하여라.

 $\sqrt{5}$, $-\sqrt{2}$, $\frac{\sqrt{7}}{2}$, $\sqrt{6}$, $-\sqrt{\frac{3}{4}}$

① 4 ② 5 ③ 6 ④ 7

(5)8

가장 큰 수는 $\sqrt{6}$

가장 작은 수는 $-\sqrt{2}$ $\therefore x^2 + y^2 = (-\sqrt{2})^2 + (\sqrt{6})^2 = 2 + 6 = 8$

41. a는 유리수, b는 무리수일 때, 다음 중 그 값이 항상 무리수인 것은?

 $3 a^2 - b^2$

① $\sqrt{a} + b$ ② $\frac{1}{2}$ ② $\frac{1}{2}$ ④ ab ③ $\frac{1}{2}$

해설

① $a=2,b=-\sqrt{2}$ 일 때, $\sqrt{2}+(-\sqrt{2})=0$ 이므로 유리수이다. ③ $b=\sqrt{2}$ 일 때, $b^2=2$ 이므로 a^2-b^2 는 유리수이다. ④ a=0 일 때, ab=0 이므로 유리수이다.

⑤ $a=2, b=\sqrt{8}$ 일 때, $\frac{\sqrt{8}}{\sqrt{2}}=2$ 이므로 유리수이다.

42. 다음 중 그 결과가 반드시 무리수인 것은?

- ① (무리수)+ (무리수) ③ (유리수)x (무리수)
- ② (무리수)- (무리수)
- ⑤ (무리수)- (유리수)
- ④ (무리수)÷ (무리수)

① $\sqrt{2} + (-\sqrt{2}) = 0$ (유리수)

- ② $\sqrt{2} \sqrt{2} = 0$ (유리수) ③ $0 \times \sqrt{2} = 0$ (유리수)
- ④ $\sqrt{2} \div \sqrt{2} = 1$ (유리수)

43. 다음 중 옳지 <u>않은</u> 것을 모두 고르면?

- ① 순환하는 무한소수는 반드시 유리수이다.
- ② 서로 다른 두 무리수 사이에는 적어도 하나 이상의 자연수가 존재한다.
- ③ 반지름의 길이가 0 이 아닌 실수인 원의 넓이는 반드시 무리수이다.④ 완전제곱수의 제곱근은 항상 유리수이다.
- ⑤ 서로 다른 두 무리수의 곱은 항상 무리수이다.

② $\sqrt{2}$ 와 $\sqrt{3}$ 사이에는 자연수가 존재하지 않는다.

- ⑤ √2 와 √2 의 곱은 유리수이다. 따라서 옳지 않은 것은 ②, ⑤이다.