1. 다항식
$$f(x) = 3x^3 - 7x^2 + 5x + 2$$
를 $3x - 1$ 로 나눌 때의 몫과 나머지를 구하면?

① 몫:
$$x^2 - 2x + 1$$
, 나머지: 3

② 몫:
$$x^2 - 2x + 1$$
, 나머지: 2

③ 몫 :
$$x^2 + 2x + 1$$
, 나머지 : 3

④ 몫 :
$$x^2 + 2x + 1$$
, 나머지 : 2

⑤ 몫 :
$$x^2 + 2x + 1$$
, 나머지 : 1

직접나누는 방법과 조립제법을 이용하여 구하는 방법이 있다. $f(x) = (3x - 1)(x^2 - 2x + 1) + 3$

$$f(x) = (3x-1)(x^2-2x+1)+3$$

∴ 몫: x^2-2x+1 , 나머지: 3

2. 등식 $x^2 + 2x + 3 = a(x - 1)^2 + bx + c$ 가 x에 대한 항등식이 되도록 상수 a, b, c의 값을 정할 때, a + b + c의 값은?

우변을 전개하여 동류항으로 묶는다.

$$x^2 + 2x + 3 = a(x - 1)^2 + bx + c$$

 $= ax^2 + (b - 2a)x + a + c$
 $a = 1, b - 2a = 2, a + c = 3$
 $a = 1, b = 4, c = 2$

a + b + c = 7

3. 다음은 인수분해를 이용하여 이차방정식을 푼 것이다. ※에 알맞은 것은?

 $11x^2 - 13x + 2 = 0$

$$(11x-2)(\textcircled{?}) = 0$$

$$x = \frac{2}{11} \ \text{\mathred{E}} \ x = 1$$

①
$$x-2$$
 ② $x-1$ ③ $x+1$ ④ $x+2$ ⑤ $x+3$

해설
$$x \text{에 대한 이차방정식}$$

$$11x^2 - 13x + 2 = 0$$

$$(11x - 2)(x - 1) = 0$$

$$\therefore x = \frac{2}{11} 또는 x = 1$$
따라서 沙는 $x - 1$

4. 다음 이차방정식 중 서로 다른 두 실근을 갖는 것을 모두 고르면?

①
$$x^2 + 2x + 1 = 0$$

 ② $x^2 + 2x + 4 = 0$
 ② $x^2 + 4x + 2 = 0$

(a)
$$a = 1, b' = 1, c = 4$$

 $1^2 - 1 \cdot 4 = -3 < 0$: $\overrightarrow{a} = 7$

⑤
$$a = 1, b' = 2, c = 2$$

 $2^2 - 1 \cdot 2 = 2 > 0$: 서로 다른 두 실근 (○)

다항식 (x − 1)³ + 27을 바르게 인수분해한 것은?

①
$$(x-1)(x^2+3)$$
 ② $(x-1)(x^2-x-2)$

③
$$(x-1)(x^2+3x+3)$$
 ④ $(x+2)(x^2+x+7)$ ⑤ $(x+2)(x^2-5x+13)$

$$x-1$$
을 A 로 치환하면
준 식 = $A^3+27=(A+3)(A^2-3A+9)$
다시 $x-1$ 을 대입하면 $(x+2)(x^2-5x+13)$

6.
$$x$$
에 대한 다항식 $x^3 - 2x^2 - x + 2$ 가 $(x+a)(x+b)(x+c)$ 로 인수분해 될 때, $a^2 + b^2 + c^2$ 의 값은? (단, a,b,c 는 상수)

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

$$x^{3} - 2x^{2} - x + 2 = (x+1)(x-1)(x-2)$$
$$a^{2} + b^{2} + c^{2} = (-1)^{2} + 1^{2} + 2^{2} = 6$$

7. $z = \frac{2}{1+i}$ 에 대하여 $z^2 - 2z + 3$ 의 값은? (단, $i = \sqrt{-1}$)

 $z^2 - 2z + 3 = (1 - i)^2 - 2(1 - i) + 3 = 1$

해설
$$z = \frac{2}{1+i} = 1-i$$

8. 이차함수 $y = ax^2 + bx + c$ 의 그래프가 점 (1,5) 를 지나고, x = -1 일 때 최솟값 -3 을 가진다. 이 때, abc 의 값은?

$$y = a(x+1)^2 - 3$$
 에 $(1, 5)$ 를 대입하면 $a = 2$
따라서 $y = 2(x+1)^2 - 3$ 을 전개하면 $y = 2x^2 + 4x - 1$ 이므로 $a = 2$, $b = 4$, $c = -1$

- 9. -2 ≤ x ≤ 2 에서 함수 y = -x² + 4x + k 의 최댓값이 6 일 때, 최솟값은?
 - ① -14 ② -12 ③ -10 ④ -8 ⑤ -6

해설
$$y = -x^2 + 4x + k = -(x - 2)^2 + k + 4$$
이므로
$$x = 2$$
일 때 y 의 최댓값은 $k + 4$ 이다. 따라서 $k + 4 = 6$ 에서 $k = 2$
$$-2 \le x \le 2$$
에서 $y = -(x - 2)^2 + 6$ 은 $x = -2$ 일 때 최솟값을 가지며, 최솟값은 -10 이다.

10. 이차함수 $y = -x^2 + kx + k$ 의 그래프와 직선 y = -2x + 1 이 만나지 않도록 하는 k 값의 범위를 구하면?

①
$$-8 < k < -1$$
 ② $-8 < k < 0$ ③ $-6 < k < 1$

두 함수가 만나지 않으려면
두 식을 연립하였을 때 판별식이
0보다 작아야 한다.
$$\Rightarrow -2x+1=-x^2+kx+k$$

 $\Rightarrow x^2-(k+2)x+1-k=0$

 $D = (k+2)^2 - 4(1-k) < 0$

 $k^2 + 8k < 0$ $\Rightarrow -8 < k < 0$

11. 이차함수 $y = \frac{2}{3}x^2 - 4ax - 6a$ 의 그래프를 x 축의 방향으로 7 만큼, y 축의 방향으로 -3 만큼 평행 이동하였더니 최솟값이 -3 이 되었다. 이 때, 상수 a 의 값은? (단, a < 0)

① 0 ② 1 ③ -1 ④ 2

해설
$$y = \frac{2}{3}x^2 - 4ax - 6a$$

$$= \frac{2}{3}(x^2 - 6ax + 9a^2 - 9a^2) - 6a$$

$$= \frac{2}{3}(x - 3a)^2 - 6a^2 - 6a$$

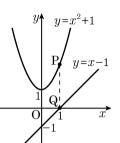
$$y = \frac{2}{3}(x - 3a)^2 - 6a^2 - 6a$$
 의 그래프를 x 축의 방향으로 7 만큼,
$$y$$
 축의 방향으로 -3 만큼 평행 이동한 식은
$$y = \frac{2}{3}(x - 3a - 7)^2 - 6a^2 - 6a - 3$$
 이다.
최솟값이 -3 이므로
$$-6a^2 - 6a - 3 = -3$$
, $6a(a + 1) = 0$

$$\therefore a = -1 \text{ or } 0$$

$$\therefore a = -1(\because a < 0)$$

12. 포물선 $y = x^2 + 1$ 위의 한 점P 에서 y 축에 평행인 직선을 그어 직선 y = x - 1 과 만나는 점을 Q 라 할 때 \overline{PQ} 의 최솟값을 구하면?

①
$$\frac{1}{2}$$
 ② ②



$$\overline{PQ}$$
 가 y 축에 평행하므로 점 P, Q 의 x 좌표는 같다. 이때, 점 P 의 좌표를 (t, t^2+1) 이라고 하면, 점 Q 의 좌표는 $(t, t-1)$

$$\overline{PQ} = t^2 + 1 - (t - 1)$$

$$= t^2 - t + 2$$

$$= \left(t - \frac{1}{2}\right)^2 + \frac{7}{4}$$

따라서
$$t=\frac{1}{2}$$
 일 때, $\overline{\mathrm{PQ}}$ 의 최솟값은 $\frac{7}{4}$