- **1.** 16 의 제곱근 중 작은 수와 121 의 제곱근 중 큰 수의 합을 구하면?
 - ① -7 ② 4

- ③ 7 ④ 15 ⑤ 20

해설 16 의 제곱근은 ±4 이고 121 의 제곱근은 ±11 이다. 16 의 제곱근

중 작은 수는 -4 이고 121 의 제곱근 중 큰 수는 11 이다. 11 - 4 는 7 이다.

2. x > 1 일 때, $\sqrt{(x-1)^2} - \sqrt{(1-x)^2}$ 의 값을 구하여라.

답:

▷ 정답: 0

해설

x > 1 이므로 x - 1 > 0 , 1 - x < 0 (준식) $= (x - 1) - \{-(1 - x)\}$

$$= (x-1) - (x-1) = 0$$

3. $\sqrt{27}=a\sqrt{3}\;,\;\sqrt{72}=6\sqrt{b}\;$ 일 때, a+b 의 값을 구하여라.

답:

ightharpoonup 정답: a+b=5

해설 $\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$

 $\therefore a = 3$ $\sqrt{72} = \sqrt{6 \times 6 \times 2} = 6\sqrt{2}$

 $\therefore b = 2$

 $\therefore a+b=5$

4. $2\sqrt{3} \div 3\sqrt{2} \times \sqrt{27}$ 을 간단히 하여라.

답:

ightharpoonup 정답: $3\sqrt{2}$

한설 $2\sqrt{3} \div 3\sqrt{2} \times \sqrt{27} = 2\sqrt{3} \times \frac{1}{3\sqrt{2}} \times 3\sqrt{3}$ $= \frac{6}{\sqrt{2}}$ $= \frac{6\sqrt{2}}{\sqrt{2}\sqrt{2}}$ $= \frac{6\sqrt{2}}{2}$ $= 3\sqrt{2}$

 $\sqrt{125} + \sqrt{3} \left(\frac{\sqrt{5}}{\sqrt{3}} - \sqrt{15} \right) - \sqrt{75} = a\sqrt{3} + b\sqrt{5}$ 일 때, a + b 의 값을 **5.** 구하여라. (단, a, b는 유리수)

▶ 답:

> 정답: a+b=-2

$$\sqrt{125} + \sqrt{3} \left(\frac{\sqrt{5}}{\sqrt{3}} - \sqrt{15} \right) - \sqrt{75}$$

$$= 5\sqrt{5} + \sqrt{5} - 3\sqrt{5} - 5\sqrt{3}$$

$$= 5\sqrt{5} + \sqrt{5} - 3\sqrt{5} - 5\sqrt{3}$$

$$= -5\sqrt{3} + 3\sqrt{5}$$

$$\therefore a = -5, b = 3$$

따라서
$$a+b=-5+3=-2$$
 이다.

6. 식
$$\frac{\sqrt{3}}{2+\sqrt{3}} + \frac{\sqrt{2}}{3+\sqrt{2}}$$
 을 계산하면?

- ① $-\frac{23}{7} \frac{3}{7}\sqrt{2} 2\sqrt{3}$ ② $-\frac{23}{7} \frac{3}{7}\sqrt{2} + 2\sqrt{3}$ ③ $-\frac{23}{7} + \frac{3}{7}\sqrt{2} + 2\sqrt{3}$ ③ $-\frac{23}{7} \frac{3}{7}\sqrt{2} + 2\sqrt{3}$ ⑤ $-\frac{23}{7} \frac{3}{7}\sqrt{2} + 2\sqrt{3}$

 $= \frac{\sqrt{3}\left(2 - \sqrt{3}\right)}{\left(2 + \sqrt{3}\right)\left(2 - \sqrt{3}\right)} + \frac{\sqrt{2}\left(3 - \sqrt{2}\right)}{\left(3 + \sqrt{2}\right)\left(3 - \sqrt{2}\right)}$

 $= \frac{2\sqrt{3} - 3}{4 - 3} + \frac{3\sqrt{2} - 2}{9 - 2}$ $= 2\sqrt{3} - 3 + \frac{3}{7}\sqrt{2} - \frac{2}{7}$ $= -\frac{23}{7} + \frac{3}{7}\sqrt{2} + 2\sqrt{3}$

7. $Ax^2 - 24xy + 16y^2 = (3x + By)^2$ 일 때, A + B 의 값을 구하여라.

▶ 답:

▷ 정답: A + B = 5

해설

 $Ax^2 - 24xy + 16y^2 = (3x + By)^2$ 이므로 $(3x + By)^2$ 을 전개한 식은 $Ax^2 - 24xy + 16y^2$ 와 같아야 한다. $(3x + By)^2 = 9x^2 + 6Bxy + B^2y^2$ $= Ax^2 - 24xy + 16y^2$

$$A = 9$$
 이고, $6B = -24$ 이므로 $B = -4$ 이다.

따라서
$$A + B = 9 + (-4) = 5$$
 이다.

 $x^2 - 2x + \square = (x - \square)^2$

①1 ② 2 ③ 3 ④ 4 ⑤ 5

 $x^2 - 2x + 1 = (x - 1)^2$

- 9. $x^2 7x 8$ 를 인수분해하면?
 - ① (x+1)(x+8) ② (x-1)(x-8) ③ (x+1)(x-8)
 - (x-1)(x+8) (x-2)(x-4)

 $x^2 - 7x - 8 = (x+1)(x-8)$

- **10.** ma mb + mc 를 인수분해한 것은?
- ① m(a+b+c) ② m(a-b-c) ③ m(a-b+c)
- (4) ma(1-b+c) (5) m(a+b-c)

ma - mb + mc = m(a - b + c)

11. x 의 제곱근은 $\pm \sqrt{3}$ 이다. x의 값은 얼마인지 구하여라.

답:

> 정답: *x* = 3

-해설 제곱근의 값이 + √3, - √3

2 개이므로 x 는 양수이고, $\pm \sqrt{3}$ 를 제곱한 값 x=3 이다.

12. a < 0 일 때, $\sqrt{(-7a)^2}$ 을 간단히 나타내어라.

답:

> 정답: -7a

 $\sqrt{(-7a)^2} = \sqrt{49a^2} = 7|a| = -7a$

13. a > 0 일 때, 다음 계산에서 옳지 <u>않은</u> 것을 모두 고르면? (정답 2개)

②
$$-\sqrt{9a^2} - \sqrt{(-3a)^2} = -12a$$

③ $\sqrt{(7a)^2} + \sqrt{(-7a)^2} = 14a$

$$(4)(-\sqrt{3a})^2 + (-\sqrt{4a^2}) = 8a$$

해설

$$(4) (-\sqrt{3a})^2 + (-\sqrt{4a^2}) = 3a + (-2a) = a$$

14. $\sqrt{\frac{50}{3}x}$ 가 자연수가 되도록 하는 가장 작은 정수 x 를 구하여라.

답:

▷ 정답: x = 6

 $\frac{50}{3}x = \frac{2 \times 5^2 \times x}{3}$ 이므로 $x = 2 \times 3 = 6$ 이다.

15. $\sqrt{10-x}$ 가 가장 큰 자연수가 되도록 하는 자연수 x 는?

①1 ② 2 ③ 3 ④ 4 ⑤ 5

x = 1 일 때 $\sqrt{10 - x} = \sqrt{10 - 1} = \sqrt{9} = 3$ 이 되므로 성립한다.

 $\therefore x = 1$

16. 다음 수 중에서 가장 작은 수는?

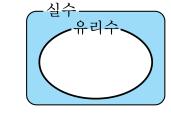
① $2\sqrt{3}$ ② 3 ③ $\frac{\sqrt{7}}{2}$ ④ $\sqrt{11}$ ⑤ $\sqrt{\frac{7}{3}}$

 $2\sqrt{3} = \sqrt{12}$ $3 = \sqrt{9}$ $\frac{\sqrt{7}}{2} = \sqrt{\frac{7}{4}}$ $\sqrt{11}$ $\sqrt{\frac{7}{3}}$ ∴ $\frac{\sqrt{7}}{2} < \sqrt{\frac{7}{3}} < 3 < \sqrt{11} < 2\sqrt{3}$

17.
$$\sqrt{(\sqrt{7}-3)^2} - \sqrt{(3-\sqrt{7})^2}$$
 을 간단히 하면?

① 0 2 $6-2\sqrt{7}$ ③ 6 ④ $\sqrt{6}$ ⑤ $3+\sqrt{7}$

 $\sqrt{7} < 3 = \sqrt{9} \text{ 이므로}$ $\sqrt{\left(\sqrt{7} - 3\right)^2} - \sqrt{\left(3 - \sqrt{7}\right)^2}$ $= \left|\sqrt{7} - 3\right| - \left|3 - \sqrt{7}\right|$ $= -\left(\sqrt{7} - 3\right) - \left(3 - \sqrt{7}\right)$ $= -\sqrt{7} + 3 - 3 + \sqrt{7} = 0$


- **18.** 부등식 $\sqrt{3} < x < \sqrt{30}$ 을 만족하는 자연수 x 가 <u>아닌</u> 것은?

- ① 2 ② 3 ③ 4 ④ 5
- **⑤**6

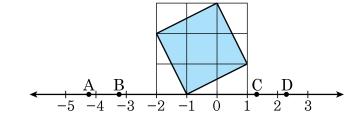
 $\sqrt{3} < x < \sqrt{30} \Rightarrow 3 < x^2 < 30$

3 과 30 사이에서 완전제곱수는 $4,\ 9,\ 16,\ 25$

 $\therefore x = 2, 3, 4, 5$

 $-\sqrt{49}$ ③ $1.211211121111 \cdots$ ⑤ $0.\dot{6}$

 $-\sqrt{49} = -7 \ (유리수)$


 $\sqrt{\frac{81}{1000}} = \frac{9}{10\sqrt{10}} (무리수)$

`

- . 다음 중 유리수인 것을 모두 고르면? (정답 2개)
 - π
- $\sqrt{1.21}$
- $3\sqrt{0.1}$
- ④ 0.01001000100001...
- 0.121

 - π 는 순환하지 않는 무한소수이다.(무리수이다.)
 - $\sqrt{1.21} = \frac{11}{10}$ 의 분수꼴로 나타낼 수 있기 때문에 유리수이다. $\sqrt{0.1}$ 는 순환하지 않는 무한소수이다.(무리수이다.)
 - ④ 0.01001000100001... 비순환소수다.(무리수이다.)
 - $0.\dot{1}2\dot{1} = \frac{121}{900}$ 의 분수꼴로 나타낼 수 있기 때문에 유리수이다.

21. 다음 수직선 위에서 무리수 $-1 - \sqrt{5}$ 에 대응하는 점은?

① A ④ D

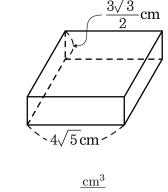
②B ③ C ⑤ 알수없다.

 $-3 < -\sqrt{5} < -2$ $-4 < -1 - \sqrt{5} < -3$

- **22.** 다음 중 수직선 위에서 -1 과 $\sqrt{3}$ 사이에 있는 수에 대한 설명으로 옳은 것은?
 - ③ 유리수가 유한개 있다. ④ 무리수는 없다.
 - ① 자연수가 2 개 있다. ② 정수가 3 개 있다.
 - ⑤ 실수는 무수히 많다.

$1 < \sqrt{3} < 2$ 이므로 범위는 $-1 \sim 1. \times \times \times$

해설


- ① 자연수가 2 개 있다. → 자연수는 1, 한 개 있다.
- ② 정수가 3 개 있다. → 정수는 0, 1 . 두 개 있다. ③ 유리수가 유한개 있다. → 무수히 많다.
- ④ 무리수는 없다. → 무수히 많다.

 $3 2\sqrt{7} \times \sqrt{7} = 14$

① $\sqrt{3}\sqrt{5} = \sqrt{15}$

 $2 - \sqrt{5}\sqrt{7} = -\sqrt{35}$

24. 한 변의 길이가 $4\sqrt{5}\,\mathrm{cm}$ 인 정사각형을 밑면으로 갖는 직육면체의 높이가 $\frac{3\,\sqrt{3}}{2}\,\mathrm{cm}$ 일 때, 직육면체의 부피를 구하여라.

> 정답: 120 √3 <u>cm³</u>

답:

지절 $V = (4\sqrt{5})^2 \times \frac{3\sqrt{3}}{2} = 80 \times \frac{3\sqrt{3}}{2} = 120\sqrt{3} \text{ cm}^3$

25. $3\sqrt{5} - \sqrt{20} - 2\sqrt{45}$ 을 바르게 계산한 것은?

- ① $-2\sqrt{5}$
- ② $-3\sqrt{5}$ ③ $-4\sqrt{5}$
- $\bigcirc 4 5\sqrt{5}$ $\bigcirc -6\sqrt{5}$

해설 $3\sqrt{5} - \sqrt{20} - 2\sqrt{45} = 3\sqrt{5} - 2\sqrt{5} - 6\sqrt{5}$

 $=-5\sqrt{5}$

- **26.** x 가 유리수 일 때, $(2+x\sqrt{2})(3-\sqrt{2})$ 가 유리수가 되도록 x 의 값을 정하여라.
 - ▶ 답:

ightharpoonup 정답: $x = \frac{2}{3}$

식 $(2+x\sqrt{2})(3-\sqrt{2})=6-2\sqrt{2}+3x\sqrt{2}-2x$ 가 유리수가 되어야 하므로 $-2\sqrt{2}+3x\sqrt{2}=0$ 이 되어야 한다. 따라서 -2+3x=0이므로 $x = \frac{2}{3}$ 이다.

- **27.** $\sqrt{6}$ 의 소수 부분을 a , $\sqrt{8}$ 의 정수 부분을 b라고 할 때, 2a-3b의 값을 구하면?
- ① $2\sqrt{2}-4$ ② $\sqrt{6}$ ③ $\sqrt{6}-4$

해설

 $(4) -6\sqrt{2} + 10$ $(5) 2\sqrt{6} - 10$

$2<\sqrt{6}<3$ 이므로 $\sqrt{6}$ 의 정수 부분 2, 소수 부분 $a=\sqrt{6}$ – 2

 $2 < \sqrt{8} < 3$ 이므로 $\sqrt{8}$ 의 정수 부분 b = 2 $\therefore 2a - 3b = 2(\sqrt{6} - 2) - 3 \times 2 = 2\sqrt{6} - 10$

① a ④ a+3 ② 2a ③ 2a + 3

3 4

- 해설 (3 A) 7

(주어진 식)= $\sqrt{(a+2)^2} - \sqrt{(a-2)^2}$ -2 < a < 2 일 때, a+2 > 0, a-2 < 0이므로 $\sqrt{(a+2)^2} - \sqrt{(a-2)^2} = a+2 - \{-(a-2)\}$ = a+2+(a-2)=2a **29.** $6x^2 + 17xy + Ay^2 = (2x + 3y)(Bx + Cy)$ 일 때, A - BC 의 값을 구하 여라.

■ 답:

▷ 정답: A - BC = 0

해설 (2x+3y)(Bx+Cy)

 $= 2Bx^{2} + (2C + 3B)xy + 3Cy^{2}$ $= 6x^{2} + 17xy + Ay^{2}$

2B = 6, B = 32C + 3B = 17, C = 4

A = 3C, A = 12 $A - BC = 12 - 3 \times 4 = 0$

 $\therefore A - BC = 12$

30. 다음 중 인수분해가 <u>잘못된</u> 것은?

①
$$3x^3 + x^2 - x = x(3x^2 + x - 1)$$

② $-x^2 + 25 = (5 + x)(5 - x)$

③
$$x^2 + 8x + 12 = (x+2)(x+6)$$

해설

$$4 36x^{2} + 24xy + 4y^{2} = 4(9x^{2} + 6xy + y^{2})$$
$$= 4(3x + y)^{2}$$

 ${f 31}$. 다음 세 식에서 x 에 대한 일차식을 공통인 인수로 가질 때, k 의 값을 구하여라.

$$6x^2 + x - 1$$
, $9x^2 - 1$, $3x^2 + kx - 2$

▶ 답:

> 정답: *k* = 5

 $6x^2 + x - 1 = (2x + 1)(3x - 1)$

해설

 $9x^2 - 1 = (3x + 1)(3x - 1)$ 공통인 인수는 3*x* – 1 이다.

 $3x^2 + kx - 2 = (3x - 1)(x + 2) = 3x^2 + 5x - 2$

 $\therefore k = 5$

- **32.** $3x^2 + (3a+16)x 6$ 을 인수분해하면 (x+b)(3x-2) 가 된다. 이때, 상수 a+b 의 값은?

- ① -3 ② -1 ③ 0 ④ 2 ⑤ 3

해설 $(x+b)(3x-2) = 3x^2 + (-2+3b)x - 2b$ 이므로

 $3x^2 + (-2+3b)x - 2b = 3x^2 + (3a+16)x - 6$ -2 + 3b = 3a + 16, -2b = -6 $\therefore b = 3$ $\therefore a = -3 \qquad \therefore a + b = 0$

- **33.** $(x-2y)(x-2y-4z)-12z^2$ 이 계수가 1 인 두 일차식의 곱으로 인수 분해될 때, 두 일차식의 합을 구하면?
 - ① 2x 4y + 4z(4) 2x + 4y + 4z (5) 4x - 2y - 4z
- ② 2x 4y 4z ③ 2x 4y + 3z

해설

x - 2y = A 라 하면

 $A(A - 4z) - 12z^2 = A^2 - 4Az - 12z^2$ = (A - 6z)(A + 2z)

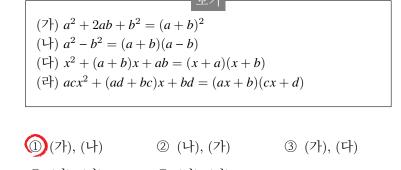
$$= (A - 6z)(A + 2z)$$

$$= (x - 2y - 6z)(x - 2y + 2z)$$

$$\therefore (x-2y-6z) + (x-2y+2z) = 2x-4y-4z$$

34. 다음 중 $a^3 - a^2 - a + 1$ 의 인수가 아닌 것은 모두 몇 개인지 구하면?

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 없다


해설

 $a^3 - a^2 - a + 1 = a^2(a - 1) - (a - 1)$ $= (a^2 - 1)(a - 1)$ $= (a - 1)^2(a + 1)$ 따라서 $a^3 - a^2 - a + 1$ 의 인수인 것은 ⓒ, ⓒ, ⓒ이므로 인수가 아닌 것은 남은 2개이다. **35.** 다음 다항식의 인수분해 과정에서 \bigcirc , \bigcirc 에 이용된 공식을 보기에서 찾아 차례로 짝지은 것은?

$$x^{2} + 2xy + y^{2} - 1$$

$$= (x+y)^{2} - 1$$

$$= (x+y+1)(x+y-1)$$

③ (가), (다)

④ (다), (가) ⑤ (가), (라)

$$x^{2} + 2xy + y^{2} - 1$$

$$= (x+y)^{2} - 1 \rightarrow a^{2} + 2ab + b^{2} = (a+b)^{2} \circ \frac{\Omega}{\Omega}$$

$$= (x+y+1)(x+y-1) \rightarrow (a^{2} - b^{2}) = (a+b)(a-b)$$

36. 다음은 수직선을 보고 설명한 것이다. 다음 중 <u>틀린</u> 것을 모두 고르면?

- ① $\sqrt{15}$ 는 3 과 4 사이에 위치한다.
- ② $-\sqrt{2}$ 는 점 B 에 위치한다. ③ A 와 B 사이에는 무한 개의 유리수가 존재한다.
- ④ $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$, $\sqrt{8}$ 중 구간 C 에 속하는 무리수는
- 모두 7 개이다. ⑤ $2\sqrt{3}$ 에 대응하는 점은 D 이다.

② $-\sqrt{2}$ 는 점 A 에 위치한다.

- ④ √4 는 무리수가 아니다.

37. $4+\sqrt{3}$ 의 소수 부분이 a, 정수 부분이 b일 때, $ab-\frac{2}{a}$ 의 값을 구하여라.

답:

<

ightharpoonup 정답: $4\sqrt{3}-6$

$$4 + \sqrt{3} = 5. \times \times \bigcirc \square \square \square \square$$

$$a = \sqrt{3} - 1, b = 5$$

$$\frac{2}{a} = \frac{2(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \sqrt{3} + 1$$
∴ $ab - \frac{2}{a} = 5(\sqrt{3} - 1) - (\sqrt{3} + 1)$

$$= 5\sqrt{3} - 5 - \sqrt{3} - 1$$

$$= 4\sqrt{3} - 6$$

 ${f 38.}$ 다음 세 수 ${\it A,\;B,\;C}$ 의 대소 관계를 구하려고 한다. 다음 중 대소 관계를 나타낸 것으로 <u>틀린</u> 것을 모두 고르면?

$$A = \sqrt{5} + \sqrt{3}$$
, $B = \sqrt{5} + 1$, $C = 3 + \sqrt{3}$

 $\textcircled{3} C < B < A \qquad \qquad \textcircled{3} \quad B < A < C$

해설

(1) $A - B = (\sqrt{5} + \sqrt{3}) - (\sqrt{5} + 1)$ $= \sqrt{3} - 1 > 0$ A > B(2) $A - C = (\sqrt{5} + \sqrt{3}) - (3 + \sqrt{3})$ $=\sqrt{5}-3<0$ $\therefore A < C$ (1), (2)의 결과에 의하여 *B < A < C*

39. 다음 제곱근표를 이용하여 $\sqrt{0.0313}$ 의 값을 구하여라.

수	0	1	2	3	4	5	•••
:	:	:	:	•	:	:	•••
3.0	1.732	1.735	1.736	1.741	1.744	1.746	•••
3.1	1.781	1.764	1.766	1.769	1.772	1.775	•••
3.2	1.789	1.792	1.794	1.797	1.800	1.803	•••
:	:	:	:	:	:	:	٠.

▷ 정답: 0.1769

▶ 답:

 $\sqrt{0.0313} = \sqrt{\frac{3.13}{100}} = \frac{\sqrt{3.13}}{10} = \frac{1.769}{10} = 0.1769$

- 40. 이차항의 계수가 1 인 이차식을 인수 분해하는데, 민수는 x 의 계수를 잘못 보고 $(x+1)\,(x-10)\, 으로 \,\, 인수분해하였고, 원철이는 상수항을 잘못 보고 <math display="block"> (x+3)\,(x-6)\, 으로 \,\, 인수분해하였다. \,\, 주어진 \,\, 이차식을 바르게 \,\, 인수분$
 - (x+3)(x-6)으로 인수분해하였다. 주어진 이차식을 바르게 인수는 해하면?
 - ① (x-5)(x+2) ② (x-3)(x+6) ③ (x+5)(x-2) ④ (x-1)(x+10)
 - (x-5)(x-2)

민수는 $x^2 - 9x - 10$ 에서 상수항 -10 을 맞게 보았고,

해설

원철이는 $x^2 - 3x - 18$ 에서 x 의 계수 -3 을 맞게 보았다. 따라서 주어진 이차식은 $x^2 - 3x - 10 = (x - 5)(x + 2)$

- **41.** $(x-y)^2 8x + 8y + 16$ 을 인수분해하면 $(ax+by+c)^2$ 이다. 이 때, a+b+c의 값은? (단, a는 양수)
 - ① -16 ③ 2 ④ 8 ⑤ 12

 $(x-y)^2 - 8(x-y) + 16$ 에서 x - y = A로 치환하면

 $A^{2} - 8A + 16 = (A - 4)^{2} = (x - y - 4)^{2}$ $\therefore a = 1, b = -1, c = -4$

 $\therefore a+b+c=-4$

해설

42. 다음 식이 완전제곱식일 때, 상수 a 의 값을 구하여라.

$$(x+2)(x+4)(x+5)(x+7) + a$$

답:

▷ 정답: a = 9

해설 (준식) = (x+2)(x+7)(x+4)(x+5) + a $= (x^2 + 9x + 14)(x^2 + 9x + 20) + a$ $x^2 + 9x = A 로 치환하면$ (준식) = (A+14)(A+20) + a $= A^2 + 34A + 280 + a$ $= (A+17)^2 = (x^2 + 9x + 17)^2$ $17^2 = 280 + a$ $\therefore a = 9$

43. 다음 식을 인수분해하면?

$$x^2 - y^2 + 8x + 4y + 12$$

- ③ (x+y+2)(x+y+6) ④ (x+y-2)(x-y-6)
- ① (x+y+3)(x-y+4) ② (x+y+4)(x-y+3)
- (x+y+2)(x-y+6)

 $x^2 + 8x - (y^2 - 4y - 12)$

$$= x^{2} + 8x - (y+2)(y-6)$$

= $(x+y+2)(x-y+6)$

44. $\sqrt{89 \times 91 + 1} = 10 \times x^2$ 일 때, x 의 값은?

① $\pm \sqrt{3}$ ② ± 3 ③ ± 9 ④ ± 18 ⑤ ± 81

 $\sqrt{(90-1)(90+1)+1} = \sqrt{90^2-1+1} = 90$ $10x^2 = 90$ $x = \pm 3$

45. $x=2+2\sqrt{3}$, $y=\sqrt{3}-1$ 일 때, x^2-4y^2 의 값을 구하여라.

▶ 답:

> 정답: 16 √3

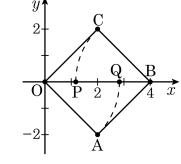
$$x^{2} - 4y^{2} = x^{2} - (2y)^{2}$$

$$= (x + 2y)(x - 2y)$$

$$= (2 + 2\sqrt{3} + 2\sqrt{3} - 2)(2 + 2\sqrt{3} - 2\sqrt{3} + 2)$$

$$= 4\sqrt{3} \times 4$$

$$= 16\sqrt{3}$$


46. $\sqrt{196} \div \sqrt{(-2)^2} + \sqrt{(-3)^4} = x$, $2 \times \sqrt{4^2 \times (-2)^4} - \sqrt{225} = y$, $\sqrt{0.64} - \sqrt{0.01} = z$ 일 때, x + y + 10z 의 값을 구하여라.

답:

▷ 정답: 40

 $x = \sqrt{196} \div \sqrt{(-2)^2} + \sqrt{(-3)^4}$ $= 14 \div 2 + 9$ = 7 + 9 = 16 $y = 2 \times \sqrt{4^2 \times (-2)^4} - \sqrt{225}$ $= 2 \times 16 - 15$ = 32 - 15 = 17 $z = \sqrt{0.64} - \sqrt{0.01} = 0.8 - 0.1 = 0.7$ 따라서 x + y + 10z = 16 + 17 + 7 = 40 이다.

47. 다음그림과 같이 좌표평면 위의 정사각형 OABC 에서 $\overline{OA}=\overline{OQ}$, $\overline{BC}=\overline{BP}$ 이다. 두 점 P, Q 의 x 좌표를 각각 p,q 라 할 때, p+q 의 값을 구하여라.

답:▷ 정답: p+q=4

 $p = 4 - 2\sqrt{2}$

해설

 $q = 0 + 2\sqrt{2} = 2\sqrt{2}$ 이므로 $p + q = 4 - 2\sqrt{2} + 2\sqrt{2} = 4$ 이다.

48. 제곱근의 나눗셈을 이용하였더니 $\sqrt{10}$ 은 $\frac{\sqrt{2}}{\sqrt{5}}$ 의 a 배였고, $\sqrt{21}$ 은 $\frac{\sqrt{7}}{\sqrt{3}}$ 의 b 배였다. a+b 의 값을 구하여라.

■ 답:

 ▶ 정답: a+b=8

 $\sqrt{10} \div \frac{\sqrt{2}}{\sqrt{5}} = \sqrt{10} \times \frac{\sqrt{5}}{\sqrt{2}}$ $= \sqrt{\frac{10 \times 5}{2}}$ $= \sqrt{25} = 5$ $\therefore a = 5$ $\sqrt{21} \div \frac{\sqrt{7}}{\sqrt{3}} = \sqrt{21} \times \frac{\sqrt{3}}{\sqrt{7}} = \sqrt{9} = 3$ $\therefore b = 3$ $\therefore a + b = 5 + 3 = 8$

 ${f 49.}$ $\sqrt{5} imes 3\sqrt{a} = 15$, $\sqrt{3} imes \sqrt{b} = 6$, $\sqrt{2.43} = c\sqrt{3}$ 일 때, 유리수 a,b,c의 곱 *abc* 의 값은?

② 54 ③ $\frac{54}{5}$ ④ $3\sqrt{6}$ ⑤ 1 ① 60

$$3\sqrt{a} = \frac{15}{\sqrt{5}}, \sqrt{a} = \frac{15}{3\sqrt{5}} = \sqrt{5}$$

$$\therefore a = 5$$

$$\sqrt{b} = \frac{6}{\sqrt{3}} = 2\sqrt{3} = \sqrt{12}$$

$$\therefore b = 12$$

$$\sqrt{\frac{243}{100}} = \frac{9\sqrt{3}}{10} = c\sqrt{3}$$

$$\sqrt{b} = \frac{12}{\sqrt{3}} = 2\sqrt{3} = \sqrt{1}$$

$$b = 12$$

$$\sqrt{\frac{100}{100}} = \frac{1}{10} = c \mathbf{V}$$

$$\therefore c = \frac{9}{10}$$

$$\therefore abc = 5 \times 12 \times \frac{9}{10} = 54$$

$$\therefore abc = 5 \times 12 \times \frac{10}{10} =$$

50. $x + \frac{1}{x} = 4$ 일 때, $x - \frac{1}{x}$ 의 값이 될 수 있는 것을 모두 고르면?

① $2\sqrt{3}$ ② $3\sqrt{3}$ ③ $-2\sqrt{3}$ ④ $-3\sqrt{3}$ ⑤ 2

ি ক্রাপ্র $\left(x + \frac{1}{x}\right)^2 = 4^2$ $x^2 + \frac{1}{x^2} + 2 = 16$ $x^2 + \frac{1}{x^2} = 16 - 2 = 14$ $\left(x - \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} - 2 = 14 - 2 = 12$ $x - \frac{1}{x} = \pm \sqrt{12} = \pm 2\sqrt{3}$