1.
$$A = 2x^2 + 5xy - 3y^2, B = 4x^2 - 5xy + y^2, C = -x^2 + 4y^2$$
 일 때, $2A - \{B - (2C - 3A)\}$ 를 간단히 하면?

① $8x^2 + 30xy - 24y^2$

 $3 -8x^2 + 30xy - 24y^2$

 $(5) -8x^2 - 10y^2$

 $28x^2 - 30xy - 24y^2$ $(4) -8x^2 + 10y^2$

① -5x + 1 ② -x + 1 ③ 5x + 1 ④ x + 1

 $(2x^3 - 3x + 1) \div (x^2 + 2)$ 의 계산에서 나머지는?

다항식 $f(x) = 3x^3 - 4x^2 + 2x - k$ 가 x - 2 를 인수로 가질 때, k 의 값은?

① 8 ② 10 ③ 12 ④ 16 ⑤ 20

다음 중 옳지 <u>않은</u> 것은?
① i² = -1

(3) $\sqrt{-9} = 3i$

② $x^2 = -4$ 를 만족하는 실수는 존재하지 않는다.

- ④ 2는 복소수이다.
 - ⑤ a + bi 에서 b = 0 이면 실수이다. (단, a, b 는 실수)

- 등식 (a+3b) + (a-2b)i = 7-3i를 만족하는 실수 a, b에 대하여 *a* − *b* 의 값은?
 - ① -3 ② -1 ③ 1 ④ 3 ⑤ 5

6. 복소수 $\frac{2+3i}{1-i}$ 를 a+bi 꼴로 나타낼 때, a+b 의 값은?

① -1 ② 0 ③ 1

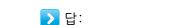
🔰 답:

7. $x = 1 + \sqrt{2}i, y = 1 - \sqrt{2}i$ 일 때, $x^2 + y^2$ 의 값을 구하여라.

다항식 f(x)를 $2x^2 + 3x + 2$ 로 나누었더니 몫이 3x - 4이고, 나머지가 2x + 5이었다. 이 때, f(1)의 값은?

③ 1

(4) 3


다음 중 다항식의 전개가 잘못된 것은?

 $(5) (x-1)^2 (x+1)^2 = x^4 - 2x^2 + 1$

- ① $(x+1)(x^2-x+1)=x^3+1$
 - (2) $(a+2b-3c)^2 = a^2+4b^2+9c^2+4ab-12bc-6ac$
 - $(x+2)(x^2-2x+4)=x^3+8$

 - $(x^2 xy + y^2)(x^2 + xy + y^2) = x^4 x^2y^2 + y^4$

10. 다음 등식이
$$k$$
의 값에 관계없이 항상 성립할 때, xy 의 값을 구하여라.
$$(2k+3)x + (3k-1)y + 5k - 9 = 0$$

11. 다항식 $x^3 + ax - 8 = x^2 + 4x + b$ 로 나눌 때, 나머지가 3x + 4가 되도록 상수 a + b의 값을 정하여라. > 답:

12. $x^3 - 2x^2 + a$ 가 x + 3 로 나누어 떨어지도록 상수 a 의 값을 구하여라. **)** 답: a =

① a + c ② $a - b^2$ ③ $a^2 - b^2 + c^2$ ④ $a^2 + b^2 + c^2$ ⑤ $a^2 + b^2 - c^2$

13. 다음 중 다항식 $a^3 - a^2b + ab^2 + ac^2 - b^3 - bc^2$ 의 인수인 것은?

③
$$(x-2)(x+1)(x^2+x+3)$$
 ④ $(x-1)(x+2)(x^2-x+3)$
⑤ $(x+1)(x-2)(x^2-x+3)$

15. $x^2 - 2x - y^2 + 2y$ 를 인수분해 하였더니 (x + ay)(x - by + c)가 된다고 할 때, a + b + c의 값을 구하여라.

> 답:

의 값을 구하여라.

16. $x^3 - 4x^2 + x + 6$ 을 인수분해하면 (x+a)(x+b)(x+c)이다. $a^2 + b^2 + c^2$

구하여라

17. $(a+1)(a^2-a+1) = a^3+1$ 을 이용하여 $\frac{1999^3+1}{1998\times 1999+1}$ 의 값을

▶ 답:

18. 다음 세 다항식에서 최대공약수를 구하면? $2x^2 - 3x + 1$, $3x^2 - x - 2$, $x^2 + 3x - 4$

① x - 1(4) x + 3

(2) 2x - 1

(3) x - 2

(5) x + 1

x에 대한 일차방정식 $(a^2+3)x+1=a(4x+1)$ 의 해가 무수히 많을 때, a의 값은? (4) 3

20. 다항식
$$x^5\left(x+\frac{1}{x}\right)\left(1+\frac{2}{x}+\frac{3}{x^2}\right)$$
의 차수는?

① 2차 ② 3차 ③ 6차 ④ 7차 ⑤ 8차

21. $(a+b)(a^2-ab+b^2)(a^3-b^3)$ 의 전개식으로 옳은 것은?

(5) $a^9 - b^9$

① $a^3 + b^3$ ② $a^6 + b^6$ ③ $a^6 - b^6$

 $4 a^9 + b^9$

22. $2x^3 + 9x^2 + 11x + 7 = a(x+1)^3 + b(x+1)^2 + c(x+1) + d$ 대한 항등식일 때, a, b, c, d를 차례로 구하면? $\bigcirc 3, -1, 3, 2$ $\bigcirc 2, 3, -1, 3$

3 -3, 1, -3, -2 4 -2, -3, 1, -3

 \bigcirc 1, -3, 4, -2

(+) -2, -3, 1, -3

(1) a + b(4) a - b + 2

 $\sqrt{(b-1)^2}$ 을 간단히 하면?

②
$$a-b$$

23. 실수 a, b 에 대하여 $\frac{\sqrt{b-1}}{\sqrt{a+1}} = -\sqrt{\frac{b-1}{a+1}}$ 이 성립할 때, |a+1|+

(5) b - a - 2

$$\Im b-a$$

24. $|x-1| = 3 - \sqrt{x^2}$ 의 해를 구하여라.

▶ 답:

> 답:

- 실수 a,b에 대하여 연산*를 $a*b=a^2+b$ 로 정의한다. 방정식 x*(x-6)=0의 두 근을 α,β 라 할 때, $\alpha+2\beta$ 의 값을 구하여라. (단,
- - $\alpha < \beta$

▶ 답:

26. x에 대한 방정식 $ix^2 + (1+i)x + 1 = 0$ 의 해를 구하여라. (단, $x \neq i$) > 답:

27. 이차방정식 $x^2 + 6x + a = 0$ 의 한 근이 $b + \sqrt{3}i$ 일 때. a + b의 값을 구하여라. (단, a, b는 실수이고 $i = \sqrt{-1}$ 이다.)

▶ 답:

삼차항의 계수가 1인 삼차식 f(x)에 대하여 f(1) = f(2) = f(3) = 3이 성립할 때, f(0) 의 값은? (2) -4 (3) -3**(4)** 1

x에 대한 다항식 f(x)를 (x-a)(x+b), (x+b)(x-c), (x-c)(x-a)로 나눈 나머지가 각각 x + 2, -x + 4, 0일 때, 상수 a,b,c의 곱을 구하면? (2) -8(4) -12

x에 관한 다항식 f(x)를 $x^2 - 4$ 로 나눈 나머지는 2x + 1이고, g(x)를 x^2-5x+6 으로 나눈 나머지는 x-4이다. 이 때, (x+2)f(x)+3g(x+1)을 *x* − 2로 나눈 나머지를 구하면?

① 7 ② 9 ③ 13 ④ 17 ⑤ 23

- **31.** $a^2 b^2 + c^2 d^2 + 2(ac + bd)$ 를 바르게 인수분해 한 것은?
 - ① (a+b-c-d)(a-b+c+d)
 - ② (a+b+c+d)(a-b+c-d)
 - ③ (a+b+c-d)(a-b+c+d)④ (a-b+c-d)(a-b+c+d)
 - \bigcirc (a+b+c+d)(a-b-c+d)

- **32.** $a^2b^2(a-b) + b^2c^2(b-c) + c^2a^2(c-a)$ 를 인수분해 하였을 때, 다음 중 인수가 <u>아닌</u> 것은?
 - ① a-b ② b-c ③ c-a

33.
$$x + \frac{1}{x} = 1$$
 일 때, $x^3 + 5x + \frac{2}{x} + \frac{1}{x^3}$ 의 값을 구하면?

①
$$\frac{1}{2}(1 \pm \sqrt{3}i)$$
 ② $\frac{3}{2}(1 \pm \sqrt{3}i)$ ③ $\frac{5}{2}(2 \pm \sqrt{3}i)$

①
$$\frac{1}{2}(1 \pm \sqrt{3}i)$$
 ② $\frac{3}{2}(1 \pm \sqrt{3}i)$ ④ $\frac{7}{2}(3 \pm \sqrt{3}i)$ ⑤ $\frac{9}{2}(4 \pm \sqrt{3}i)$