①
$$\frac{1}{6}(k+1)(k+3)(k+4)$$
 ② $\frac{1}{3}k(k+1)(k+2)$

 $\frac{k}{2}(k+1)(k+2) + (k+1)(k+2)$ 와 같은 것은?

①
$$\frac{1}{6}(k+1)(k+3)(k+4)$$
 ② $\frac{1}{3}k(k+1)(k+2)$ ③ $\frac{1}{3}(k+1)(k+2)(k+3)$ ④ $\frac{1}{3}k(k+1)(k+2)(k+3)$ ⑤ $\frac{1}{4}(k+1)(2k+1)(3k+2)$

해설
$$(k+1)(k+2) = \frac{3}{3}(k+1)(k+2)$$
이므로 공통인수 $\frac{1}{3}(k+1)(k+2)$ 로 묶으면
$$(준 \ 4) = \frac{1}{3}(k+1)(k+2)(k+3)$$

①
$$A = x^3 + x^2 + x + 2$$
, $B = -2x^3 - 3x^2 + 3x + 3$

②
$$A = x^3 - x^2 + x + 2, \ B = -2x^3 - x^2 + 3x + 3$$

③
$$A = x^3 - x^2 + x - 2$$
, $B = -2x^3 - x^2 + 3x + 7$

$$A + B = -x^3 - 2x^2 + 4x + 5 \cdots \bigcirc$$

 $2A - B = 4x^3 - x^2 - x + 1 \cdots \bigcirc$

$$(\bigcirc + \bigcirc) \div 3 : A = x^3 - x^2 + x + 2$$
$$(2\bigcirc - \bigcirc) \div 3 : B = -2x^3 - x^2 + 3x + 3$$

3. 다음 식을 전개한 것 중 옳은 것을 고르면?

①
$$(x-y-z)^2 = x^2 - y^2 - z^2 - 2xy + 2yz - 2zx$$

$$(3x - 2y)^3 = 27x^3 - 54x^2y + 18xy^2 - 8y^3$$

$$(x+y)(x-y)(x^2+xy-y^2)(x^2-xy+y^2) = x^9-y^9$$

$$(x^2 - 2xy + 2y^2)(x^2 + 2xy + 2y^2) = x^4 + 4y^4$$

해설

$$(x+y-1)(x^2+y^2-xy+2x+2y+1) = x^3+y^3-3xy-1$$

①
$$(x-y-z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2zx$$

② $(3x-2y)^3 = 27x^3 - 54x^2y + 36xy^2 - 8y^3$
③ $(x+y)(x-y)(x^2 + xy + y^2)(x^2 - xy + y^2)$
 $= x^6 - y^6$
⑤ $(x+y-1)(x^2 + y^2 - xy + x + y + 1)$

 $= x^3 + v^3 - 3xv - 1$

4. $n^4 - 6n^2 + 25$ 의 값이 소수가 되게 하는 정수 n의 개수는?

- ① 1개 ②2개 3 4개
- ④ 없다⑤ 무수히 많다

해설
$$p = n^4 - 6n^2 + 25$$

$$= n^4 + 10n^2 + 25 - 16n^2$$

$$= (n^2 + 5)^2 - (4n)^2$$

$$= (n^2 + 4n + 5)(n^2 - 4n + 5)$$

$$p 가 소수이므로 n^2 + 4n + 5 = 1$$
또는 $n^2 - 4n + 5 = 1$ 이어야 한다.
$$n^2 + 4n + 4 = (n + 2)^2 = 0 에서 n = -2$$

$$n^2 - 4n + 4 = (n - 2)^2 = 0 에서 n = 2$$
따라서 구하는 n 은 두 개이다.

5.
$$z = \frac{-1 + \sqrt{3}i}{2}$$
 에 대하여 $z^{2005} + \overline{z}^{2005}$ 의 값을 구하면?

$$3 \frac{-1 - \sqrt{3}i}{2}$$

$$\sqrt{3}i$$

$$z = \frac{-1 + \sqrt{3}i}{2}$$
, $\bar{z} = \frac{-1 - \sqrt{3}i}{2}$

$$2z + 1 = \sqrt{3}i$$
 에서 양변을 제곱해서 정리하면 $z^2 + z + 1 = 0$, $(z - 1)(z^2 + z + 1) = 0$
 $\therefore z^3 = 1$, $\overline{z}^3 = 1$

$$z^{3} = 1, \quad \overline{z}^{3} = 1 z^{2005} + \overline{z}^{2005} = (z^{3})^{668} \cdot z + (\overline{z}^{3})^{668} \cdot \overline{z} = z + \overline{z} = -1$$

6. 방정식 $\{1+(a+b)^2\}$ $x^2-2(1-a-b)x+2=0$ 의 근이 실수일 때 a^3+b^3-3ab 의 값을 구하면 ? (단, a, b는 실수)

① 1 ②
$$-1$$
 ③ 2 ④ -2 ⑤ 0

$$\frac{D}{4} = (1 - a - b)^2 - \left\{1 + (a + b)^2\right\} \cdot 2 \ge 0$$

$$-(a + b)^2 - 2(a + b) - 1 \ge 0$$
양변에 -1 을 곱하면
$$(a + b)^2 + 2(a + b) + 1 \le 0$$

$$\{(a + b) + 1\}^2 \le 0$$
그런데 a, b 가 실수이므로 $a + b + 1 = 0$

$$\therefore a + b = -1$$

$$\therefore a^3 + b^3 - 3ab = (a + b)^3 - 3ab(a + b) - 3ab$$

$$= (-1)^3 - 3ab(-1) - 3ab$$

$$= -1$$

7. 이차함수 y = f(x)의 그래프가 다음 그림과 같을 때, 이차방정식 f(2x-1) = 0의 두 근의 합은?

① -1 ② 0 ③ 1

④ 2 ⑤ 3

해설
$$y = f(x) 의 그래프와 x 축의 교점의 x 좌표가 -1, 3이므로 f(x) = a(x+1)(x-3)(a>0)으로 놓을 수 있다.$$
이때, $f(2x-1) = a(2x-1+1)(2x-1-3) = 4ax(x-2)$ 이므로 $f(2x-1) = 0$ 에서 $4ax(x-2) = 0$ $x = 0$ 또는 $x = 2$ 따라서 두 근의 합은 2이다.

8. $P(x) = x^2 + x + 1$ 에 대하여 $P(x^6) \stackrel{\triangle}{=} P(x)$ 로 나눈 나머지를 구하면?

① x-4

② 4x - 1

35

(4) 4

해설

∴ 나머지= 3

(5) 3

$$P(x^6) = x^{12} + x^6 + 1$$

 $x^2 + x + 1 = 0$ 의 해를 w 라 하자.
 $w^2 + w + 1 = 0$, 양변에 $(w - 1)$ 을 곱하면
 $w^3 - 1 = 0$, $w^3 = 1$
 $x^{12} + x^6 + 1 = (x^2 + x + 1)Q(x) + ax + b$ 에
 w 를 대입하면,
 $(w^3)^4 + (w^3)^2 + 1 = (w^2 + w + 1)Q(w) + aw + b$
 $3 = aw + b$
 w 는 허수, a , b 는 실수 이므로, $a = 0, b = 3$

9. N_1 , N_2 , N_3 , \cdots , N_8 은 모두 자연수이고, $N_1 < N_2 < \cdots < N_8$, $N_1 + N_2 + N_3 + \cdots + N_8 = 80$ 이라 할 때, N_8 의 최댓값은? (단, $N_1 = 4$)

① 29 ② 30 ③ 31 ④ 32 ⑤ 33

$$N_1 < N_2 < N_3 < \cdots < N_8$$
이므로 $N_2 = N_1 + 1$, $N_3 = N_2 + 1 = N_1 + 2$, \cdots , $N_7 = N_6 + 1 = N_1 + 6$ 일 때, N_8 은 최댓값이 된다. $N_1 + (N_1 + 1) + (N_1 + 2) + \cdots + (N_1 + 6) + N_8 = 80$ $N_1 + (1 + 2 + \cdots + 6) + N_8 = 80$ $N_1 + (1 + 2 + \cdots + 6) + N_8 = 80$ $N_1 + (1 + 2 + \cdots + 6) + N_8 = 80$

 $N_8 = 80 - 49 = 31$