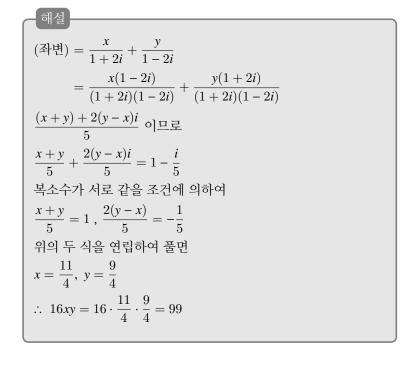


① 97 ② 98 ③ 99 ④ 100 ⑤ 101



2. 허수단위 i에 대하여 $i + i^2 + i^3 + i^4 + i^5 + i^6$ 을 간단히하면?

① 1+i ② -1+i ③ 2i ④ 2+i ⑤ 2

 $i + i^{2} + i^{3} + i^{4} + i^{5} + i^{6}$ = i + (-1) + (-i) + 1 + i + (-1) = -1 + i

3. $a=2+\sqrt{3}i,\ b=2-\sqrt{3}i$ 일 때, $\frac{b}{a}+\frac{a}{b}$ 의 값을 구하여라. (단, $i = \sqrt{-1}$)

▶ 답:

ightharpoonup 정답: $rac{2}{7}$

 $a = 2 + \sqrt{3}i, \ b = 2 - \sqrt{3}i$ 일 때 $\frac{b}{a} + \frac{a}{b} = \frac{b^2 + a^2}{ab} = \frac{(a+b)^2 - 2ab}{ab} \cdots$

이 때, $a + b = (2 + \sqrt{3}i) + (2 - \sqrt{3}i) = 4$ $ab = (2 + \sqrt{3}i)(2 - \sqrt{3}i)$ $= 2^2 - (\sqrt{3}i)^2 = 4 + 3 = 7$ 이므로

a+b=4, ab=7 을 \bigcirc 에 대입하면

 $\frac{b}{a} + \frac{a}{b} = \frac{(a+b)^2 - 2ab}{ab}$ $= \frac{16 - 14}{7} = \frac{2}{7}$

- $lpha=1+i\;,$ $eta=2-i\;$ 의 켤레복소수를 각각 $\overline{lpha},\;\overline{eta}$ 라 할 때, $lpha\overline{lpha}+lpha\overline{eta}+$ 4. $\overline{\alpha}\beta + \overline{\alpha\beta}$ 의 값은?
 - ① 0

- ② 3 ③ 7-2i ④ 7-i
- ⑤ 7 + i

 $lpha=1+i\;,eta=2-i\;$ 에서 $\overline{lpha}=1-i\;,\overline{eta}=2+i\;$ 이므로

해설

 $\alpha\overline{\alpha} + \alpha\overline{\beta} + \overline{\alpha}\beta + \overline{\alpha}\beta$ = (1+i)(1-i) + (1+i)(2+i) + (1-i)(2-i) + (1-i)(2+i)

= (1+1) + (2-1+3i) + (2-1-3i) + (2+1-i)

= 7 - i

- 이차방정식 $ax^2+bx+c=0$ 의 두 근을 $lpha,\ eta$ 라 하고 판별식을 D라고 **5.** 할 때 $|\alpha - \beta|$ 는 다음 중 어느 것과 같은가 ?
 - ① $\frac{\sqrt{D}}{a}$ ② $\frac{-\sqrt{D}}{a}$ ③ $\frac{\sqrt{D}}{|a|}$ ④ $-\frac{\sqrt{D}}{|a|}$ ⑤ $-\frac{D}{|a|}$

근의 공식을 이용하여 풀면

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$ $\stackrel{=}{=} \alpha = \frac{-b + \sqrt{D}}{2a}, \beta = \frac{-b - \sqrt{D}}{2a} (\stackrel{=}{\cup}, D = b^2 - 4ac)$ $\therefore |\alpha - \beta| = \left| \frac{-b + \sqrt{D}}{2a} - \frac{-b - \sqrt{D}}{2a} \right|$ $= \left| \frac{-b + \sqrt{D} + b + \sqrt{D}}{2a} \right|$ $= \left| \frac{2\sqrt{D}}{2a} \right| = \frac{\sqrt{D}}{|a|}$

방정식 $2x^2-6x+3=0$ 의 두 근을 α , β 라 할 때, $\alpha^2+\beta^2$ 의 값을 **6.**

- ① 1 ② 2 ③ 4 ④ 5 ⑤ 6

$$\alpha + \beta = 3, \ \alpha\beta = \frac{1}{2}$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2$$

$$\alpha + \beta = 3, \ \alpha\beta = \frac{3}{2}$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 9 - 2 \cdot \frac{3}{2} = 6$$

- 7. 이차함수 $y = x^2 2(k-3)x + 4$ 의 그래프가 x축과 서로 다른 두 점에서 만날 때, 상수 k의 값의 범위는?
 - ① k < 1③ k < 3
- ② 1 < k < 3
- 4 3 < k < 5

⑤ k < 1 또는 k > 5

이차함수 $y = x^2 - 2(k-3)x + 4$ 의 그래프가 x축과 서로 다른 두

점에서 만나므로 이차방정식 $x^2 - 2(k-3)x + 4 = 0$ 의 판별식을 *D*라 하면 *D* > 0이어야 한다. $\frac{D}{4} = (k-3)^2 - 4 > 0$

$$\begin{vmatrix} 4 \\ k^2 - 6k + 5 > 0, & (k-1)(k-5) > 0 \end{vmatrix}$$

∴ k < 1 또는 k > 5

8. 이차함수 $y = 2(x-1)^2 + 3$ 의 최솟값을 구하여라.

답:

▷ 정답: 3

y = 2(x − 1)² + 3 의 그래프는 x = 1 일 때 최솟값이 3 이다.

9. 삼차방정식 $x^3 + 27 = 0$ 의 모든 근의 합은?

①0 2 1 3 2 4 3 5 4

 $x^3 + 3^3 = 0$, $(x+3)(x^2 - 3x + 9) = 0$

 $x^3 + 27 = 0$ 에서 x^2 의 계수가 0이므로 근과 계수와의 관계에 의해 세 근의 합은 0

10. 다음 이차방정식의 해를 바르게 짝지은 것은?

해설

(1)
$$x(5x-4) = 4(x-1)$$

(2) $x^2 - 3\sqrt{2}x + 6 = 0$

①
$$(1)\frac{4\pm 2i}{5}$$
, $(2)\frac{3\sqrt{2}\pm\sqrt{6}i}{2}$ ② $(1)\frac{3\pm 2i}{5}$, $(2)\frac{3\sqrt{2}\pm\sqrt{6}i}{2}$ ③ $(1)\frac{4\pm 2i}{5}$, $(2)\frac{3\sqrt{3}\pm\sqrt{6}i}{2}$ ④ $(1)\frac{1\pm 2i}{5}$, $(2)\frac{2\sqrt{2}\pm\sqrt{6}i}{2}$ ⑤ $(1)\frac{4\pm 3i}{5}$, $(2)\frac{3\sqrt{2}\pm\sqrt{6}i}{2}$

근의 공식을 이용하여 푼다.
$$(1) x(5x-4) = 4(x-1)$$

$$\therefore 5x^2 - 8x + 4 = 0$$

$$\therefore x = \frac{4 \pm \sqrt{16 - 20}}{5} = \frac{4 \pm 2i}{5}$$

$$(2) x = \frac{3\sqrt{2} \pm \sqrt{18 - 24}}{2} = \frac{3\sqrt{2} \pm \sqrt{6}i}{2}$$

11. 이차방정식 $x^2 + (k-4)x + k - 1 = 0$ 이 중근을 가지도록 상수 k의 값의 합을 구하여라.

▶ 답:

➢ 정답: 12

해설

판별식을 D 라 하면, D=0 일 때 중근을 가지므로

 $D = (k-4)^2 - 4(k-1) = k^2 - 12k + 20 = 0 \text{ odd}$

(k-2)(k-10) = 0따라서, k=2, k=10이므로 k의 값은 12이다.

 $\square \square \backslash \backslash, \ k = 2, \ k =$

12. 이차방정식 $x^2 + 2x + 3 = 0$ 의 해를 구하기 위해 완전제곱식으로 고쳐 $(x+a)^2 = b$ 를 얻었다. 이때, 상수 a, b 에 대하여 a-b 의 값을 구하여라.

 답:

 ▷ 정답:
 3

, , ,

 $x^2 + 2x + 3 = 0$ 를 완전제곱식으로 고치면

 $(x^{2} + 2x + 1) + 2 = 0, (x + 1)^{2} = -2$ $\therefore a = 1, b = -2$ $\therefore a - b = 3$

.. u b – 0

- 13. x = 0 일 때, 최댓값 -1 을 갖고 한 점 (2, -3) 을 지나는 포물선의
 - ① $y = -2(x+1)^2 4$ ② $y = (x-2)^2 3$
 - $y = -\frac{1}{2}x^2 1$
- ③ $y = -2(x-1)^2 + 3$ ④ $y = -(x+1)^2 + 3$

꼭짓점이 (0, -1) 이므로 $y = ax^2 - 1$ (2, -3) 을 대입하면 -3 = 4a - 1

$$a = -\frac{1}{2}$$

 $a = -\frac{1}{2}$ $\therefore y = -\frac{1}{2}x^2 - 1$

14. x의 범위가 $1 \le x \le 2$ 일 때, 함수 $y = x^2 - x - 1$ 의 최댓값과 최솟값의 곱은?

① -5 ② -3 ③ -1 ④ 1 ⑤ 3

$$y = x^2 - x - 1 = \left(x - \frac{1}{2}\right)^2 - \frac{5}{4}$$
 이므로

꼭짓점의 x 좌표 $\frac{1}{2}$ 이 x의 범위에 포함되지 않는다.

- **15.** 방정식 $x^3 x^2 + ax 1 = 0$ 의 한 근이 -1일 때, 상수 a의 값과 나머지 두 근을 구하면?
 - ③ $a = 3, 1 \pm \sqrt{3}$

① $a = 3, 1 \pm \sqrt{2}$

- ③ $a = 3, 1 \pm \sqrt{3}$ ⑤ $a = -1, 1 \pm \sqrt{2}$
- $4 \ a = -3, 1 \pm \sqrt{3}$

x = -1이 근이므로 -1 - 1 - a - 1 = 0에서 a = -3

인수정리와 조립제법을 이용하면 (좌변) = $(x+1)(x^2-2x-1)=0$ $x^2-2x-1=0$ 의 근은 $1\pm\sqrt{2}$

∴ a = -3, 나머지 근은 1 ± √2

- **16.** 삼차방정식 $x^3 5x^2 + ax + b = 0$ 의 한 근이 $1 + \sqrt{2}$ 일 때, 다른 두 근을 구하면? (단, a,b는 유리수)
- ① $1 \sqrt{2}$, 2 ② $-1 + \sqrt{2}$, -3 ③ $1 \sqrt{2}$, 3

해설

 $\textcircled{4} \ 1 - \sqrt{2} \ , \ -3 \qquad \qquad \textcircled{5} \ -1 + \sqrt{2} \ , \ 3$

한 근이 $1+\sqrt{2}$ 이면 다른 한 근은 $1-\sqrt{2}$ 이다.

삼차방정식의 근과 계수와의 관계에 의해 세근의 합은 5이므로 $\therefore 1 + \sqrt{2} + (1 - \sqrt{2}) + \alpha = 5, \ \alpha = 3$

- ∴ 다른 두 근은 3,1 √2

17. $\begin{cases} x - y = 1 \\ x^2 + y^2 = 5 \end{cases}$ 에서 xy의 값을 구하면?

답:

▷ 정답: 2

 $\begin{cases} x - y = 1 & \cdots \\ x^2 + y^2 = 5 & \cdots \\ & \text{이에서 } x = y + 1 \stackrel{\triangle}{=} \text{ ©에 대입하면,} \\ (y + 1)^2 + y^2 = 5 \\ y^2 + y - 2 = 0 \\ (y + 2)(y - 1) = 0 \\ \therefore y = -2 또는 y = 1 \\ y = -2 \stackrel{\triangle}{=} \text{ 이에 대입하면 } x = -1 \\ y = 1 \stackrel{\triangle}{=} \text{ ©에 대입하면 } x = 2 \\ \therefore xy = 2 \end{cases}$

18. 다음 방정식의 해는?

$x^2 - 5|x| + 6 = 0$

① $0, \pm 1$ ② $0, \pm 2$ ③ $\pm 1, \pm 2$

4 ±2, ±3 5 ±3, ±4

(i) $x^2 - 5|x| + 6 = 0$ 에서

 $x \ge 0$ 일 때,

 $x^2 - 5x + 6 = 0$

(x-2)(x-3) = 0

 $\therefore x = 2$, 또는 x = 3(ii) x < 0일 때,

 $x^2 + 5x + 6 = 0$

(x+2)(x+3) = 0

 $\therefore x = -2, \, \stackrel{\rightharpoonup}{\sqsubseteq} x = -3$

(i),(ii)에서 $x = \pm 2$, $x = \pm 3$

19. 방정식 $2[x]^2 - [x] - 1 = 0$ 의 해를 $a \le x < b$ 라 할 때, 2a + b의 값을 구하면? (단, [x]는 x를 넘지 않는 최대 정수이다.)

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

2[x]² - [x] - 1 = (2[x] + 1)([x] - 1) = 0 그런데 [x]는 정수이므로 [x] = 1

그런데 [x] 는 정우이므로 [x] = 1 ∴ 1 ≤ x < 2 ∴ a = 1,b = 2 이므로 2a + b = 4

해설

- **20.** 이차방정식 $x^2 (k-1)x + k = 0$ 의 두 근의 비가 2:3일 때, 실수 k값의 곱을 구하여라.
- ▶ 답:

▷ 정답: 1

두 근의 비가 2:3이므로 두 근을 $2\alpha,3\alpha$ 라 하면

 $2\alpha + 3\alpha = 5\alpha = k - 1 \quad \cdots \quad \bigcirc$ $(2\alpha)(3\alpha) = 6\alpha^2 = k \quad \cdots \quad \square$

① 에서 $\alpha = \frac{k-1}{5}$, 이것을 $\hat{}$ 이 대입하면 $6k^2 - 37k + 6 = 0$

 $\therefore k = 6, \frac{1}{6}$

- ${f 21}$. 원점을 지나고 이차함수 $f(x)=x^2+ax+2$ 에 접하는 두 개의 직선이 서로 직교할 때, 점 (a, b)의 자취를 나타내는 방정식은? (단, b > 0)이다.)
 - ① $b = \frac{1}{2}(a+1)$ ② $b = \frac{1}{8}(a^2+1)$ ③ $b = \frac{1}{4}a^2$ ④ $b = \frac{1}{6}(a-3)^2$ ⑤ $b = \frac{1}{12}a^2 4$
 - 원점을 지나는 직선 y = mx라 두면, $x^2 + ax + 2b = mx$

 $x^2 + (a-m)x + 2b = 0$

$$A + (u - m)x + 2b = 0$$

$$D = (a - m)^2 - 8b = 0$$

$$D = (a - m)^{2} - 8b = 0$$
$$= m^{2} - 2am + a^{2} - 8b = 0$$

두 직선이 직교할 때, 기울기의 곱은
$$-1$$
 이므로,
근과 계수의 관계에서 $a^2 - 8b = -1$

 $\therefore b = \frac{1}{8}(a^2 + 1)$

22. 함수 $f(x) = (x^2 - 2x + 2)(x^2 - 2x + 3) + 3x^2 - 6x$ 의 최솟값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

 $x^{2} - 2x + 2 = t 로 동으면$ $t = (x - 1)^{2} + 1 \ge 1 \text{ 이코}$ f(x) = g(t) = t(t + 1) + 3t - 6 $= t^{2} + 4t - 6$ $= (t + 2)^{2} - 10 (t \ge 1)$ 따라서 구하는 최솟값은 $g(1) = (1 + 2)^{2} - 10 = -1$

- **23.** 삼차방정식 $x^3 6x^2 7x 5 = 0$ 의 세 근을 α, β, γ 라 할 때, $(1 \alpha)(1 \alpha)$ β) $(1 - \gamma)$ 의 값은?
 - ① -15
- ② 16 ③ -16 ④ 17
- **⑤**-17

 $(1-\alpha)(1-\beta)(1-\gamma) = 1 - (\alpha+\beta+\gamma) + (\alpha\beta+\beta\gamma+\gamma\alpha) - \alpha\beta\gamma$

해설

근과 계수와의 관계에 의해 $\alpha + \beta + \gamma = 6$, $\alpha\beta + \beta\gamma + \gamma\alpha = -7$, $\alpha\beta\gamma = 5$

 $\therefore (1-\alpha)(1-\beta)(1-\gamma) = 1-6-7-5 = -17$

 $f(x) = x^3 - 6x^2 - 7x - 5 = (x - \alpha)(x - \beta)(x - \gamma) = 0$ 이므로

해설

 $f(1) = (1 - \alpha)(1 - \beta)(1 - \gamma) = 1 - 6 - 7 - 5 = -17$

24. $\omega = \frac{-1 + \sqrt{3}i}{2}$ 일 때, $\frac{\omega^2}{\omega^{10} + 1} + \frac{\omega^{10} + 1}{\omega^2}$ 의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

 $\omega = \frac{-1 + \sqrt{3}i}{2},$ $2\omega + 1 = -\sqrt{3}i$ 양변을 제곱해서 정리하면 $\omega^2 + \omega + 1 = 0$ 따라서 $x^2 + x + 1 = 0$ 의 근이 ω 이다. $(x - 1)(x^2 + x + 1) = 0$ $\Leftrightarrow x^3 - 1 = 0$ $\therefore \omega^3 = 1$ $(준식) = \frac{-(1 + \omega)}{(\omega^3)^3 \cdot \omega + 1} + \frac{(\omega^3)^3 \cdot \omega + 1}{-(1 + \omega)}$ $= \frac{-(\omega + 1)}{(\omega + 1)} + \frac{(\omega + 1)}{-(\omega + 1)} = -2$

25. 대각선의 길이가 $50\,\mathrm{m}$ 인 직사각형 모양의 땅이 있다. 이 땅의 세로를 $5\,\mathrm{m}$ 늘리고, 가로를 $10\,\mathrm{m}$ 줄이면 넓이가 $50\,\mathrm{m}^2$ 만큼 늘어난다. 처음 직사각형의 가로의 길이를 구하여라. (단위는 생략할 것)

답: <u>m</u>> 정답: 48 <u>m</u>

он. 48<u>m</u>

