- 1. x-y=1을 만족하는 모든 실수 x,y에 대하여 등식 $3x^2-5x+1=$ $ay^2 + by + c$ 이 항상 성립할 때, a + b + c의 값은? (단, a, b, c는 상수)
 - 33 ④ 4
 ⑤ 5 ① 1 ② 2

x = y + 1을 주어진 식에 대입한 후, y에 대한 내림차순으로 정리한다. $3(y+1)^2 - 5(y+1) + 1 = ay^2 + by + c$ $(3-a)y^2 + (1-b)y - 1 - c = 0$ $\therefore a = 3, b = 1, c = -1$ $\therefore a+b+c=3$

해설

- 다항식 $(x-1)^3 + 27$ 을 바르게 인수분해한 것은? **2**.
 - ① $(x-1)(x^2+3)$
- ② $(x-1)(x^2-x-2)$
- ③ $(x-1)(x^2+3x+3)$ ④ $(x+2)(x^2+x+7)$

x − 1 을 A 로 치환하면 준 식 = $A^3 + 27 = (A+3)(A^2 - 3A + 9)$

다시 x-1을 대입하면 $(x+2)(x^2-5x+13)$

- **3.** $x^3 6x^2 + 11x 6$ 을 인수분해 하면?

 - ① (x+1)(x-2)(x+3) ② (x-1)(x+2)(x+3)
 - (x-1)(x-2)(x+3)

인수정리를 이용하면

 $f(1)=0,\,f(2)=0,\,f(3)=0$ 이므로

(준식)= (x-1)(x-2)(x-3)

- **4.** $x^3 + x^2 + 2$ 를 다항식 $x^2 + 2x 1$ 로 나누었을 때의 몫을 Q(x) 나머지를 R(x)라 할 때, Q(x) + R(x)의 값은?
- ① 2x-3 ② 2x ③ 3x+2

 $x^3 + x^2 + 2$ 를 $x^2 + 2x - 1$ 로 직접 나누면 $Q(x) = x - 1, \ R(x) = 3x + 1$

 $\therefore Q(x) + R(x) = 4x$

- $(a+b)(a^2-ab+b^2)(a^3-b^3)$ 의 전개식으로 옳은 것은? **5.**
 - ① $a^3 + b^3$
 - ② $a^6 + b^6$ $\textcircled{4} \ a^9 + b^9 \qquad \qquad \textcircled{5} \ a^9 - b^9$
- $3a^6 b^6$

(준식)= $(a^3 + b^3)(a^3 - b^3) = a^6 - b^6$

6. 모든 모서리의 합이 36, 겉넓이가 56인 직육면체의 대각선의 길이는?

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

직육면체의 가로, 세로, 높이를 각각 a, b, c라 하자. $4(a+b+c) = 36, \ 2(ab+bc+ca) = 56$ $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$

 $a^2 + b^2 + c^2 = 81 - 56 = 25$

 \therefore (대각선의 길이) = $\sqrt{a^2 + b^2 + c^2}$

해설

 $= \sqrt{25} = 5$

7. $\frac{2x+3a}{4x+1}$ 가 x에 관계없이 일정한 값을 가질 때, 12a의 값을 구하시오.

> 정답: 12a = 2

▶ 답:

 $\frac{2x+3a}{4x+1}=k\ (일정값=k\)$ 라 놓으면 2x+3a=k(4x+1)에서 (2-4k)x+3a-k=0 이 식은 x에 대한 항등식이므로, $2-4k=0,\ 3a-k=0$ $k=\frac{1}{2}$ 이므로 3a=k에서 $a=\frac{1}{6}$ $\therefore \ 12a=2$

 $\therefore 12a = 2$

8. x에 대한 다항식 $x^3 + ax^2 + bx + 3$ 을 $(x-1)^2$ 을 나누었을 때 나머지가 2x+1이 되도록 상수 a-b의 값을 구하여라.

□ 답: □ 정답: 1

.

해설

최고차항의 계수가 1이므로 --3 + ---2

 $x^{3} + ax^{2} + bx + 3$ $= (x-1)^{2} (x+k) + 2x + 1$ $= x^{3} + (k-2)x^{2} + (3-2k)x + k + 1$

= x² + (k − 2)x² + (3 − 2k)x + k + 양변의 계수를 비교하면

a = k - 2, b = 3 - 2k, 3 = k + 1

k = 2이므로 a = 0, b = -1∴ a - b = 0 - (-1) = 1

9. $x^3 - x^2 + 2 = (x+1)^3 + a(x+1)^2 + b(x+1) + c$ 가 항등식일 때, a+b+c 의 값을 구하면?

① 0 ② 1 ③ 2 ④ 3 ⑤ 4 해설

주어진 식의 양변에 x = 0 을 대입하면 2 = 1 + a + b + c $\therefore a + b + c = 1$ **10.** x에 관한 삼차식 $x^3 + mx^2 + nx + 1$ 을 x + 1로 나누면 나머지가 5이고, x-2로 나누면 나누어 떨어진다고 한다. 이 때, m+n의 값은?

① $-\frac{19}{3}$ ② $-\frac{25}{6}$ ③ $-\frac{29}{6}$ ④ $-\frac{14}{3}$ ⑤ $-\frac{7}{2}$

 $f(x) = x^3 + mx^2 + nx + 1$ f(x) = (x+1)Q1(x) + 5으로 놓으면 f(-1) = 5

f(x)=(x-2)Q'(x)으로 놓으면 f(2)=0따라서, f(-1)=-1+m-n+1=5

f(2) = 8 + 4m + 2n + 1 = 0

두 식을 연립하여 풀면 $m=\frac{1}{6}, n=-\frac{29}{6}$ $\therefore m+n=-\frac{28}{6}=-\frac{14}{3}$

11. 다항식 f(x)를 x-1로 나눈 나머지가 2이고, x+2로 나눈 나머지가 5이다. 다항식 f(x)를 (x-1)(x+2)로 나눈 나머지를 R(x)라 할 때, R(2)의 값은?

1

② 2 ③ 3 ④ 4 ⑤ 5

해설 나머지 정리에 의하여,

f(x) = (x-1)(x-2)Q(x) + ax + b라 할 수 있다.

f(1) = a + b = 2f(-2) = -2a + b = 5

연립하면, a = -1 b = 3 $\therefore R(x) = -x + 3$

R(2) = 1

- **12.** f(x)를 x-1로 나눌 때 나머지가 3이다. 또, 이때의 몫을 x+3으로 나눈 나머지가 2이면 f(x)를 x^2+2x-3 으로 나눈 나머지를 구하여라.

답: ▷ 정답: 2x+1

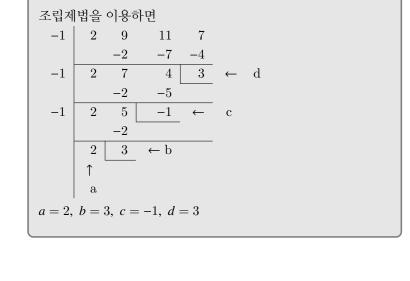
해설

f(x) = (x-1)Q(x) + 3 $= (x-1)\{(x+3)Q'(x) + 2\} + 3$

= (x-1)(x+3)Q'(x) + 2(x-1) + 3

 $= (x^2 + 2x - 3)Q'(x) + 2x + 1$ 따라서, 구하는 나머지는 2x+1

- **13.** $2x^3 + 9x^2 + 11x + 7 = a(x+1)^3 + b(x+1)^2 + c(x+1) + d$ 가 x에 대한 항등식일 때, a, b, c, d를 차례로 구하면?
 - ① 3, -1, 3, 2
- ②2, 3, -1, 3
- 3 -3, 1, -3, -2
- 4 -2, -3, 1, -3
- ⑤ 1, −3, 4, −2



14. 세 변의 길이가 a, b, c인 \triangle ABC에 대하여 $a^2 - ab + b^2 = (a + b - c)c$ 인 관계가 성립할 때, \triangle ABC는 어떤 삼각형인지 구하여라.

답:▷ 정답: 정삼각형

 $a^2 - ab + b^2 = (a + b - c)c$ 에서 $a^2 - ab + b^2 = ac + bc - c^2$ $a^2 + b^2 + c^2 - ab - bc - ca = 0$ 즉, $\frac{1}{2} \left\{ (a - b)^2 + (b - c)^2 + (c - a)^2 \right\} = 0$ $\therefore a = b = c$ 따라서, $\triangle ABC$ 는 정삼각형이다. **15.** x^4-6x^2+1 을 인수분해 하였더니 $(x^2+ax+b)(x^2+cx+d)$ 가 되었다. 이 때, a+b+c+d의 값을 구하면?

 $\bigcirc -2$ ② 2 ③ -1 ④ 1 ⑤ 4

 $x^4 - 6x^2 + 1 = (x^4 - 2x^2 + 1) - 4x^2$ $= (x^{2} - 1)^{2} - (2x)^{2}$ $= (x^{2} + 2x - 1)(x^{2} - 2x - 1)$ $= (x^{2} + ax + b)(x^{2} + cx + d)$

 $\therefore a+b+c+d=-2$

- **16.** $2x^2 + xy y^2 + 10x + 4y + 12 를 x$, y의 두 일차식의 곱으로 인수분 해하면, (x + ay + b)(2x + cy + d)가 된다고 할 때, a + b + c + d의 값은? (단, a, b, c, d 는 상수)
 - ① 6 ② 7 ③8 ④ 9 ⑤ 10

2x² + xy - y² + 10x + 4y + 12 (← x에 관하여 정리) = 2x² + (y + 10)x - (y² - 4y - 12) = 2x² + (y + 10)x - (y + 2)(y - 6)

 $= \{x + (y+2)\}\{2x - (y-6)\}\$ = (x+y+2)(2x-y+6) $\therefore a = 1, b = 2, c = -1, d = 6$

 $\therefore a+b+c+d=8$

해설

17.
$$a+b+c=0$$
일 때, $a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)$ 의 값을 구하면?

① -3 ② -1 ③ 0 ④ 1 ⑤ 3

$$a\left(\frac{1}{b} + \frac{1}{c}\right) + b\left(\frac{1}{c} + \frac{1}{a}\right) + c\left(\frac{1}{a} + \frac{1}{b}\right)$$

$$= \left(\frac{a}{b} + \frac{c}{b}\right) + \left(\frac{b}{c} + \frac{a}{c}\right) + \left(\frac{b}{a} + \frac{c}{a}\right)$$

$$= \frac{a+c}{b} + \frac{b+a}{c} + \frac{b+c}{a}$$

$$= \frac{-b}{b} + \frac{-c}{c} + \frac{-a}{a} \ (\because \ a+b+c=0)$$

$$= -3$$

18. 인수분해 공식 $a^3+b^3=(a+b)(a^2-ab+b^2)$ 을 이용하여 $\frac{9999^3+1}{9998\times 9999+1}$ 을 계산하여라.

▶ 답:

➢ 정답: 10000

9999 = a라 하면 $\frac{9999^3 + 1}{9998 \times 9999 + 1} = \frac{a^3 + 1}{(a-1)a+1}$ $= \frac{(a+1)(a^2 - a + 1)}{a^2 - a + 1}$ = a + 1 = 10000

19. 모든 모서리의 길이의 합이 60이고, 대각선의 길이가 √77인 직육면 체의 겉넓이는?

① 88 ② 100 ③ 124 ④ 148 ⑤ 160

해설

직육면체의 가로의 길이, 세로의 길이, 높이를 각각 x, y, z라고 하면 $4(x+y+z)=60\,\text{에서}\ x+y+z=15$ 또, 대각선의 길이는 $\sqrt{x^2+y^2+z^2}=\sqrt{77}\,\text{이므로}$ $x^2+y^2+z^2=77$ 이 때, 직육면체의 겉넓이는 $2(xy+yz+zx)\,\text{이고}$ $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+zx)\,\text{이므로}$ $77=15^2-2(xy+yz+zx)$ $\therefore 2(xy+yz+zx)=225-77=148$ 따라서, 직육면체의 겉넓이는 $148\,\text{이다}$.

20. $-a^2(b-c)-b^2(c-a)-c^2(a-b)$ 을 인수분해했을 때, 각 인수들의 합이 될 수 <u>없는</u> 것은?

 \bigcirc a+b $\textcircled{4} \ 2b - 2c$ $\textcircled{5} \ 0$

② 2a - 2b ③ 2b - 2a

a에 대한 내림차순으로 정리한다.

해설

 $-a^{2}(b-c)-b^{2}(c-a)-c^{2}(a-b)$ $= (c - b)a^2 - (c^2 - b^2)a + bc^2 - b^2c$ $= (c-b)a^2 - (c-b)(c+b)a + bc(c-b)$ $= (c - b) \{a^2 - (c + b)a + bc\}$ $=(c-b)(a-b)(a-c)\cdots \bigcirc$ $=(a-b)(b-c)(c-a)\cdots$ $=(b-c)(b-a)(a-c)\cdots \bigcirc$ $=(c-a)(b-c)(b-a)\cdots$

 \bigcirc 식 : 세항을 모두 더하면 2a – 2b©식: 세항을 모두 더하면 0

ⓒ식 : 세항을 모두 더하면 2b-2c

②식: 세항을 모두 더하면 2b − 2a

- ${f 21}$. 삼각형의 세 변의 길이 $a,\ b,\ c$ 에 대하여 ${a-b+c\over a+b+c}={-a-b+c\over a-b-c}$ 일 때, 이 삼각형은 어떤 삼각형인가?

 - ① 빗변의 길이가 a 인 직각삼각형 \bigcirc 빗변의 길이가 b 인 직각삼각형
 - © 빗변의 길이가 c 인 직각삼각형

 - ② 빗변의 길이가 b 인 직각삼각형

① 빗변의 길이가 a 인 직각삼각형

- ③ 빗변의 길이가 c 인 직각삼각형
- ④ a = b 인 이등변삼각형 ⑤ b=c 인 이등변삼각형

$$\begin{vmatrix} a-b+c \\ a+b+c \end{vmatrix} = \frac{-a-b+c}{a-b-c} \text{ on } \lambda$$
$$(a-b+c)(a-b-c) = (a+b+c)(-a-b+c)$$

 $\{(a-b)+c\}\{(a-b)-c\}+\{(a+b)+c\}\{(a+b)-c\}=0$ $(a-b)^2 - c^2 + (a+b)^2 - c^2 = 0$ $a^2 - 2ab + b^2 - c^2 + a^2 + 2ab + b^2 - c^2$

(a-b+c)(a-b-c) + (a+b+c)(a+b-c) = 0

 $= 2a^2 + 2b^2 - 2c^2$ $= 2(a^2 + b^2 - c^2) = 0$ $\therefore a^2 + b^2 - c^2 = 0$

그러므로 이 삼각형은 빗변의 길이가 c 인 직각삼각형이다.