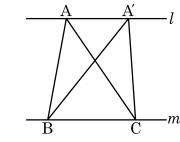

다음 그림에서 $l /\!\!/ m$ 이다. l과 m 사이의 거리는 $15 \mathrm{cm}$, $\overline{\mathrm{BC}} = 16 \mathrm{cm}$ 1. 일 때, $\triangle ABC$, $\triangle A'BC$, $\triangle A''BC$ 의 넓이의 비는?

④ 2:1:2

- ① 1:1:1 ② 1:2:1 ⑤ 2:3:1
- 31:2:3

해설

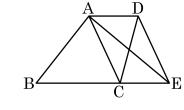

세 변의 삼각형의 밑변, 높이의 길이가 같으므로

 $\triangle ABC = \triangle A'BC = \triangle A''BC = \frac{1}{2} \times 16 \times 15$

 $=120(\mathrm{cm}^2)$

 $\therefore \ \triangle ABC \ : \ \triangle A'BC \ : \ \triangle A''BC = \ 1:1:1$

2. 다음 그림에서 $l /\!/ m$ 이다. ΔABC 의 넓이가 $30 \mathrm{cm}^2$ 일 때, $\Delta A'BC$ 의 넓이는?

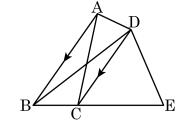


- ① 10cm² ④ 25cm²
- ② 15cm^2 ③ 30cm^2
- $3 20 \text{cm}^2$

삼각형의 밑변의 길이와 높이가 같으므로 $\triangle ABC = \triangle A'BC$

따라서 △A'BC 의 넓이는 30cm²이다.

다음 그림에서 $\square ABCD$ 의 넓이는 $20 \mathrm{cm}^2$ 이고, $\triangle ACE$ 의 넓이는 $8 \mathrm{cm}^2$ 3. 이다. AC // DE 일 때, ΔABC의 넓이는?


- \bigcirc 8cm² 4 11cm^2
- \bigcirc 9cm² \bigcirc 12cm²
- $3 10 \text{cm}^2$

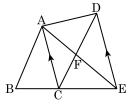
 $\triangle ACE = \triangle ADE = \triangle ADC = \triangle CED \, ^{\circ}] \, \overline{\mathcal{A}}$

해설

 $\triangle ABC = \square ABCD - \triangle ACD$ 이므로 $\triangle ABC = 20-8 = 12(\mathrm{cm}^2)$

4. 다음 그림과 같이 \overline{AB} // \overline{CD} 이고 $\Delta DCE = 30 cm^2$, $\Delta DBC = 15 cm^2$ 일 때, $\Box ACED$ 의 넓이는?

 40cm^2


② 30cm^2 ③ 45cm^2

 35cm^2

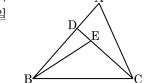
 \overline{AB} $/\!/ \overline{DC}$ 이므로 ΔACD 와 ΔDBC 는 밑변 \overline{CD} 가 같고 높이가 같으므로 넓이가 같다.

□ACED = \triangle DCE + \triangle ACD = \triangle DCE + \triangle DBC ∴ □ACED = $30 + 15 = 45(cm^2)$

다음 그림은 □ABCD 의 변 BC 의 연장선 **5.** 위에 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 가 되게 점 E 를 잡은 것이다. $\square ABCD$ 의 넓이가 $30\,\mathrm{cm}^2$ 일 때, $\triangle ABE$ 의 넓이는? ① $15 \,\mathrm{cm}^2$ ② $20 \,\mathrm{cm}^2$

 $3 25 \,\mathrm{cm}^2$ $40 \, \text{cm}^2$ $50 \, \text{cm}^2$

 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{ACD}=\triangle\mathrm{ACE}$ 이다.

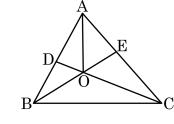

해설

 $\triangle \mathrm{ABE} = \triangle \mathrm{ABC} + \triangle \mathrm{ACE}$ $= \triangle \mathrm{ABC} + \triangle \mathrm{ACD}$ $= \Box \mathrm{ABCD}$

 $\therefore \triangle ABE = 30 (\text{cm}^2)$

다음 그림에서 ΔABC 의 넓이는 24 cm² 이 6. 고 \overline{AD} : \overline{DB} = 1 : 2, \overline{DE} : \overline{EC} = 1 : 3 일 때, △EBC 의 넓이는?

- $\boxed{3}12\,\mathrm{cm}^2$ $\bigcirc 4 \, \mathrm{cm}^2$ 2 8 cm^2


 $4 \ 16 \, \text{cm}^2$ $5 \ 20 \, \text{cm}^2$

해설

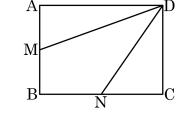
ΔDAC와 ΔDBC의 높이는 같으므로 $\Delta {
m DBC} = 24 imes rac{2}{3} = 16 ({
m \,cm}^2)$ $\Delta {
m DBE}$ 와 $\Delta {
m EBC}$ 의 높이는 같으므로

 $\Delta BEC = 16 \times \frac{3}{4} = 12 (\,\mathrm{cm}^2)$

7. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AE}:\overline{EC}=3:4,\overline{BO}:\overline{OE}=3:2$ 이다. $\triangle EOC$ 의 넓이가 $8cm^2$ 일 때, $\triangle ABC$ 의 넓이는?

- ① 20cm² ④ 32cm²
- ② 24cm^2 ③ 35cm^2
- $3 28 \text{cm}^2$

 $\Delta {
m EOC}$ 와 $\Delta {
m COB}$ 에서 높이는 같고 밑변은 2:3이므로


 $\triangle EOC = \triangle CBE \times \frac{2}{2+3} = 8(cm^2)$

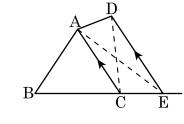
∴ ΔCBE = 20(cm²) ΔABE와 ΔBCE에서 높이는 같고 밑변은 3 : 4이므로

 $\triangle CBE = \triangle ABC \times \frac{4}{3+4} = 20(cm^2)$

 $\therefore \triangle ABC = 35cm^2$

8. 직사각형 ABCD 에서 점 M, N 은 AB, BC 의 중점이다. □ABCD = $50 \mathrm{cm}^2$ 일 때, □MBND 의 넓이를 구하면?

- ① 12.5cm² ④ 27.5cm²
- 20cm^2
- \bigcirc 25cm²


해설

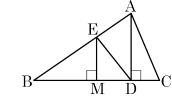
 $\odot 30 \text{cm}^2$

점 M, N 이 모두 \overline{AB} , \overline{BC} 의 중점이므로

 $\square MBND = \frac{1}{2} \square ABCD = 25cm^2$

다음 그림에서 \overline{AC} $/\!/ \,\overline{DE}$, \overline{BC} : $\overline{CE}=2:1$ 이고, $\Delta ABC=24 {
m cm}^2$ 일 9. 때, □ABCD의 넓이는?

- $\textcircled{1} \ \ 30 \mathrm{cm}^2$ $48 \mathrm{cm}^2$
- \bigcirc 36cm^2 $\bigcirc 50 \text{cm}^2$
- 340cm^2

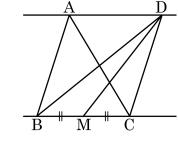

 $\triangle {
m ABC} = 24 {
m cm}^2$ 이코 $\overline{
m BC}:\overline{
m CE} = 2:1$ 이므로 $\triangle {
m ACE} = 24 imes$

 $\frac{1}{2}=12(\mathrm{cm}^2)$

 $\therefore \ \Box ABCD = \triangle ABC + \triangle ACD = \triangle ABC + \triangle ACE$

 $= 24 + 12 = 36 (\text{cm}^2)$

10. 다음 그림에서 $\overline{BM} = \overline{MC}$, $\overline{EM} \bot \overline{BC}$, $\overline{AD} \bot \overline{BC}$ 이다. $\triangle ABC$ 의 넓이가 60cm^2 일 때, $\Box AEDC$ 의 넓이는?



- ① 20cm² ④ 35cm²
- ② 25cm^2 ③ 40cm^2
- 30cm^2
- @ 100III

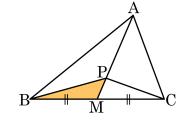
 $\overline{
m EM}$ 과 $\overline{
m AD}$ 가 모두 $\overline{
m BC}$ 에 수직이므로 $\overline{
m EM}$ $//\!\!/$ $\overline{
m AD}$

따라서 밑변과 높이가 같으므로 $\triangle AED = \triangle AMD$ 이다. $\Box AEDC = \triangle AED + \triangle ADC = \triangle AMD + \triangle ADC = \triangle AMC$ $\therefore \Box AEDC = \frac{1}{2} \triangle ABC = 30 cm^2$

11. 다음 그림에서 $\overline{\rm AD}//\overline{\rm BC}$ 이고 점 M은 $\overline{\rm BC}$ 의 중점이다. $\Delta {\rm DMC}=15\,{\rm cm}^2$ 일 때, $\Delta {\rm ABC}$ 의 넓이를 구하여라.

- ① $10 \,\mathrm{cm}^2$ ④ $25 \,\mathrm{cm}^2$
- $30\,\mathrm{cm}^2$

 $\bigcirc 15\,\mathrm{cm}^2$


- $3 20 \,\mathrm{cm}^2$

 $\overline{AD}//\overline{BC}$ 이므로 $\wedge DBC = 2 \wedge DMC$

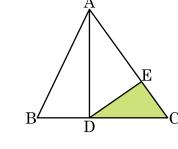
해설

 $\Delta DBC = 2\Delta DMC = 2 \times 15 = 30 \text{ (cm}^2\text{)}$ $\Delta DBC = \Delta ABC = 30 \text{ (cm}^2\text{)}$

12. 다음 그림에서 점 M은 $\overline{
m BC}$ 의 중점이고 $\overline{
m AP}=3\overline{
m PM}$ 이다. $m \triangle ABC=$ $80\mathrm{cm}^2$ 일 때, $\Delta \mathrm{PBM}$ 의 넓이는?

 10cm^2 $\textcircled{4} \ 25 \mathrm{cm}^2$

 $2 15 \text{cm}^2$ $\odot 30 \text{cm}^2$


 $3 20 \text{cm}^2$

 $\overline{\mathrm{AP}}=3\overline{\mathrm{PM}}$ 이므로 $\triangle\mathrm{ABP}=3\triangle\mathrm{PBM}$ 이다.

 $\therefore \triangle ABM = 4\triangle PBM$ 또 $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$ 이므로 $\triangle \mathrm{ABM} = \triangle \mathrm{ACM}$ 이다.

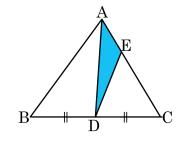
따라서 $\triangle ABC = 8\triangle PBM$ 이므로 $80 = 8\triangle PBM$ 이다. $\therefore \triangle PBM = 10(cm^2)$

13. 다음 그림에서 \overline{BD} : \overline{DC} = 2 : 3, \overline{CE} : \overline{EA} = 1 : 2이다. $\Delta ABC = 15$ 일 때, ΔDCE 의 넓이는?

① 2

3 4

4 5 **5 6**

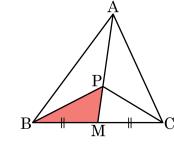

 $\triangle ADC = 3\triangle DCE$

 $\triangle ABD = \frac{2}{3} \triangle ADC = 2 \triangle DCE$ 이므로

 $\triangle ABC = 5 \triangle DCE = 15$ 이다.

∴ $\triangle DCE = 3$

 ${f 14.}$ 다음 그림과 같이 ΔABC 에서 \overline{AE} : $\overline{EC}=1$: 2이고 $\Delta AED=4{
m cm}^2$ 일 때, △ABC 의 넓이는?


- $\textcircled{1} \ 12 \mathrm{cm}^2$
- $2 16 \text{cm}^2$
- $3 20 \text{cm}^2$
- 424cm²
- \bigcirc 28cm²

 $\overline{AE}:\overline{EC}=1$: 2, $\triangle AED=4$ 이므로 $\triangle CDE=8$, $\triangle ADC=$

4 + 8 = 12 $\overline{\mathrm{BD}} = \overline{\mathrm{CD}}$ 이므로 $\triangle \mathrm{ADC} = \triangle \mathrm{ADB}$

 $\therefore \triangle ABC = 2\triangle ADC = 24(cm^2)$

15. 다음 그림에서 점 M은 \overline{BC} 의 중점이고 $\overline{AP}=2\overline{PM}$ 이다. $\triangle ABC=$ 60cm² 일 때, △PBM 의 넓이는?

 10cm^2 4 25cm^2

 \bigcirc 30cm²

 $3 20 \text{cm}^2$

 $2 15 cm^2$

 $\overline{\mathrm{AP}} = 2\overline{\mathrm{PM}}$ 이므로 $\triangle \mathrm{ABP} = 2\triangle \mathrm{PBM}$ 이다. ∴ $\triangle ABM = 3\triangle PBM$

또, $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$ 이므로 $\triangle \mathrm{ABM} = \triangle \mathrm{ACM}$ 이다. 따라서 $\triangle ABC = 6\triangle PBM$ 이므로 $60 = 6\triangle PBM$ $\therefore \triangle PBM = 10(cm^2)$