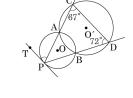

1. 다음 그림에서 두 직선 PA, PB 는 원의 접선이고 ∠AQB = 75°일 때, ∠APB 의 크기는?

①30°

② 40° ③ 50°

④ 60°

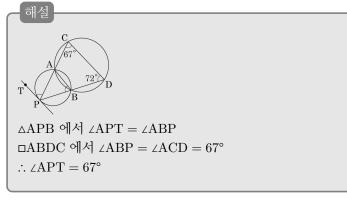

⑤ 70°

 $\angle ABP = \angle AQB = 75$ ° 이고 $\triangle PAB$ 는 이등변삼각형이므로

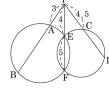
해설

 $\angle APB = 180^{\circ} - 75^{\circ} - 75^{\circ} = 30^{\circ}$

2. 다음 그림에서 \overrightarrow{PT} 가 원 O 의 접선이고, 두 점 A, B 는 두 원의 교점 이다. \overrightarrow{PA} , \overrightarrow{PB} 와 원 O' 이 만나는 점을 각각 C,D 라고 할 때, $\angle APT$ 의 크기는?



① 66°



③ 68°

④ 69° ⑤ 70°

- 다음의 그림에서 \overline{EF} 는 공통현이고, $\overline{PA}=3$, $\overline{PC}=4.5$ $\overline{PE}=4$, $\overline{EF}=5$ 일 때, $\overline{AB}+\overline{CD}$ 의 길이를 구하면? 3.

① 7.5

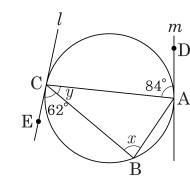
② 9.5

③ 11.5

4 12.5

⑤ 13.5

 $\overline{\overline{PA}}{\times}\overline{\overline{PB}}{=}\overline{\overline{PE}}{\times}\overline{\overline{PF}}\ ,\ 3{\times}\overline{\overline{PB}}=4\times(4+5)$ $\therefore \overline{PB} = \frac{36}{3} = 12$


$$\therefore \overline{AB} = 12 - 3 = 9$$

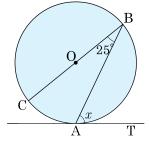
 $\therefore \overline{CD} = 8 - 4.5 = 3.5$

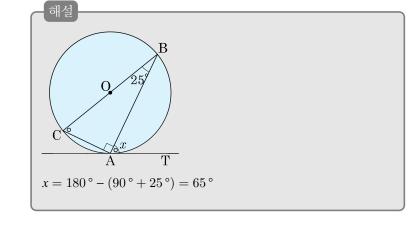
또, $\overline{\text{PC}} \cdot \overline{\text{PD}} = \overline{\text{PE}} \cdot \overline{\text{PF}}$ 에서 $\frac{9}{2} \times \overline{\text{PD}} = 4 \times (4+5)$ $\therefore \overline{PD} = 8$

 $\therefore \overline{AB} + \overline{CD} = 9 + 3.5 = 12.5$

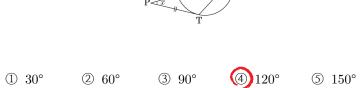
4. 다음은 원의 접점 A, C, 각 점에서의 접선 m, l 을 그린 것이다. 이때, ℓx , ℓy 의 값을 바르게 짝지은 것은?

- ① $\angle x = 84^{\circ}, \angle y = 34^{\circ}$ ③ $\angle x = 85^{\circ}, \angle y = 35^{\circ}$
- ② $\angle x = 85^{\circ}, \angle y = 34^{\circ}$ ④ $\angle x = 86^{\circ}, \angle y = 35^{\circ}$


 $\angle ECB = \angle BAC = 62^{\circ}$

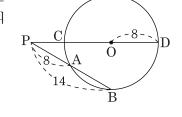

 $\angle CAD = \angle x = 84^{\circ}$ $\therefore \angle y = 180^{\circ} - 84^{\circ} - 62^{\circ} = 34^{\circ}$

 $\therefore 2y = 180^{\circ} - 84^{\circ}$


5. 다음 그림에서 직선 AT가 원 O의 접선 일 때, $\angle x$ 의 크기는?

- ① 25° ② 40°
- ③ 55°
- 4 60° (5)65°

6. 다음과 같이 원 O 의 접선 \overline{PT} 와 \overline{AT} 가 같을 때, $4 \angle x$ 의 크기는?

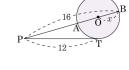

 $2\angle x + \angle x = 90^{\circ}$

 $3\angle x = 90^{\circ}$ $\therefore \angle x = 30^{\circ}$

해설

 $\therefore \ 4\angle x = 120^{\circ}$

- 다음 그림의 원 O 에서 $\overline{\mathrm{PA}} = 8, \overline{\mathrm{PB}} =$ 7. 14 , 반지름의 길이가 8 일 때, $\overline{\rm PO}$ 의 길이는?
 - \bigcirc $4\sqrt{11}$ ① $3\sqrt{11}$
 - $3\sqrt{11}$ ④ $6\sqrt{11}$
 - \bigcirc $7\sqrt{11}$



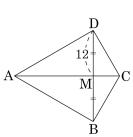
 $\overline{PO} = x$ 라 하면

해설

 $(x-8)(x+8) = 8 \times 14$ $x^2 - 64 = 112, x^2 = 176, x = 4\sqrt{11}$

8. 다음 그림에서 \overline{AB} 가 원 O 의 지름일 때, x 의 값은? (단, 점 T 는 원의 접점이다.)

 $\bigcirc \frac{7}{2}$ ② $\bigcirc \frac{9}{2}$ ③ $\bigcirc \frac{11}{2}$ ④ $\bigcirc \frac{13}{2}$ ⑤ $\bigcirc \frac{15}{2}$


 $12^2 = (16 - 2x) \times 16$

해설

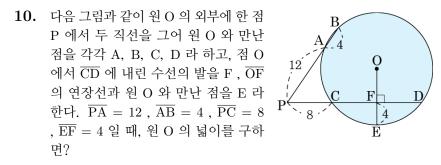
 $16 - 2x = 9, \ 2x = 7 \ \therefore \ x = \frac{7}{2}$

 $\overline{PA} = 16 - 2x$

9. 다음 그림에서 □ABCD는 원에 내접하고 $\overline{\rm DM}=\overline{\rm BM},\,\overline{\rm AM}:\overline{\rm CM}=3:1,\,\overline{\rm DM}=12$ 일 때, □ABCD의 외접원의 반지름의 길이 는? ① $2\sqrt{3}$ ② $4\sqrt{3}$ $36\sqrt{3}$

 $498\sqrt{3}$

⑤ $10\sqrt{3}$

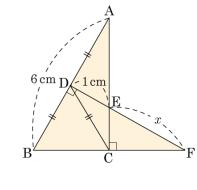

해설

 $\overline{\mathrm{BD}} \bot \overline{\mathrm{AC}}$ 이므로 $\overline{\mathrm{AC}}$ 는 지름이고

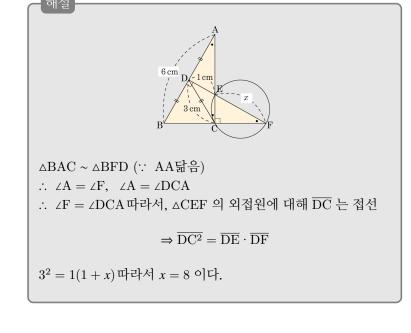
 $\overline{\mathrm{AM}}:\overline{\mathrm{CM}}=3:1$ 이므로 $\overline{\mathrm{AM}}=3k,\overline{\mathrm{CM}}=k$ 라 하면

 $\begin{aligned} &12\times 12 = 3k\times k,\ 144 = 3k^2\\ &k^2 = 48, k = 4\sqrt{3}(\because k>0)\ , \end{aligned}$ $\overline{AM} = 12\sqrt{3}, \overline{CM} = 4\sqrt{3}$

 \therefore (반지름의 길이)= $\dfrac{\overline{\mathrm{AC}}}{2}=\dfrac{\overline{\mathrm{AM}}+\overline{\mathrm{CM}}}{2}=\dfrac{16\sqrt{3}}{2}=8\sqrt{3}$



 $3 \frac{100}{3} \pi$


 2100π ① 100 ⑤ $100\sqrt{3}\pi$

해설 1) $8(8+\overline{CD}) = 12(12+4)$ $\overline{\mathrm{CD}} = 16, \ \overline{\mathrm{CF}} = \overline{\mathrm{FD}} = 8$ 2) 반지름의 길이를 r라 하면 $\overline{\mathrm{OE}} = \overline{\mathrm{OD}} = \mathrm{r}$ $\overline{\mathrm{OF}}{=}\mathrm{r}-4$ $r^2 = (r - 4)^2 + 8^2$ $\therefore r = 10$ 따라서 $S=100\pi$ 이다.

11. 다음 그림에서 $\angle ACF = \angle FDB = 90^\circ$ 이고 $\overline{AD} = \overline{BD} = \overline{DC}$ 이다. $\overline{AB} = 6 \mathrm{cm}$, $\overline{DE} = 1 \mathrm{cm}$ 일 때, \overline{EF} 의 길이를 구하면?

① 5cm ② 6cm ③ 7cm ④ 8cm ⑤ 9cm

- **12.** 다음 그림과 같이 두 원 O, O'의 공 통외접선 CD 와 공통현 AB의 연장 선이 점 P에서 만난다. $\overline{\mathrm{PA}}=1\mathrm{cm}$, $\overline{AB} = 4 \text{cm}, \ \overline{BC} = \overline{BD} = \sqrt{30} \text{cm}$ 때, △CBD의 넓이는?

 - ① $10\,\mathrm{cm}^2$
- $2 5\sqrt{3} \text{ cm}^2$
- $3 6\sqrt{2} \text{ cm}^2$ $405 \sqrt{5} \text{ cm}^2$ $5 2 \sqrt{6} \text{ cm}^2$

 $\overline{\mathrm{CP}}^2 = \overline{\mathrm{PA}} \times \overline{\mathrm{PB}} = 5$

13. 다음 그림에서 \overline{BC} 의 길이를 $a\sqrt{b}$ 라고 할 때, a+b 의 값은? (단, b는 최소의 자연수)

17

② 18 ③ 19 ④ 20

⑤ 21

 $\overline{AE} \cdot \overline{AB} = \overline{AD} \cdot \overline{AC}$ 이므로

해설

 $\overline{\mathrm{AD}} \times (\overline{\mathrm{AD}} + 10) = 8 \times 12$

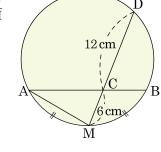
 $\overline{\mathrm{AD}}^2 + 10\overline{\mathrm{AD}} - 96 = 0$

 $(\overline{AD} + 16)(\overline{AD} - 6) = 0$

 $\therefore \overline{\mathrm{AD}} = 6$ $\overline{\text{CE}} = \sqrt{16^2 - 8^2} = \sqrt{192}$

 $\overline{BC} = \sqrt{192 + 4^2} = \sqrt{208} = 4\sqrt{13}$

 $a\sqrt{b} = 4\sqrt{13}$ $\therefore a + b = 17$


14. 다음 그림에서 5.0pt $\overrightarrow{AM} = 5.0$ pt \overrightarrow{BM} 이고, $\overrightarrow{MC} = 6$ cm, $\overrightarrow{CD} = 12$ cm 일 때, \overrightarrow{AM} 의 길이는?

 $\bigcirc 6\sqrt{3}\,\mathrm{cm}$ ① $6\sqrt{2}$ cm

 $4 7\sqrt{3} \text{ cm}$ $3 7\sqrt{2} \text{ cm}$

 $\Im 8\sqrt{2} \,\mathrm{cm}$

해설

 $5.0 ext{ptAM} = 5.0 ext{ptBM}$ 이므로 $\angle ADM = \angle BAM$ $\therefore \overline{AM}$ 은 $\triangle ACD$ 의 외접원의 접선 $\overline{AM}^2 = \overline{CM} \times \overline{DM} = 6 \times (6+12) = 108$ $\therefore \overline{AM} = 6\sqrt{3} ext{ cm}$

15. 다음 그림에서 O는 원의 중심 이고, $\overline{AB} = b$, $\overline{BC} = a$, \overline{AB} 는 원의 접선일 때, 이차방정식 $x^2 + ax - b^2 = 0$ 의 해를 길이로 갖는 선분은?

 \bigcirc \overline{AQ}

- \bigcirc \overline{AB} \bigcirc \overline{BC}
- \bigcirc \overline{AP}

해설

 $\overline{9}$ \overline{PQ}

- - $\overline{\mathrm{PQ}} = a \; (\because 원 \; \mathrm{O} \; \mathrm{의} \; \mathrm{지름})$

 $\overline{AB}^2 = \overline{AP} \times \overline{AQ}$

 $b^2 = \overline{AP}(\overline{AP} + a)$

 $\therefore \overline{AP}^2 + a\overline{AP} - b^2 = 0 \implies x^2 + ax - b^2 = 0$ $\therefore x = \overline{AP}$