1. 다음 중 무리수에 대한 설명이 아닌 것을 <u>모두</u> 고르면? (정답 2개)

① 순환하지 않는 무한소수 ② 분수로 나타낼 수 없는 수

- ③ 유한소수
 ④ 순환소수
- ⑤ 유리수가 아닌 수

2. $\sqrt{12} \times \sqrt{18} = a\sqrt{a}$ 일 때, 양수 a 의 값을 구하여라.

) 답: a = _____

3. 제곱근 $\sqrt{(-4)^2}$ 를 A, $\frac{1}{4}$ 의 음의 제곱근을 B 라 할 때, AB 의 값은? ① $\frac{1}{2}$ ② $-\frac{1}{2}$ ③ 1 ④ -1 ⑤ -2

4. $x^2 + Ax + 24$ 가 (x+a)(x+b) 로 인수분해될 때, 정수 A 의 최댓값과 최솟값의 합을 구하여라.

답: _____

5. 부등식 $2x + 5 \le x + 6$ 의 자연수의 해가 중근을 갖는 이차방정식 $x^2 + ax + b = 0$ 의 해 일 때, a 의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

6. 이차방정식 $x^2 - (m+2)x + m + 6 = 0$ 의 두 근의 비가 1:3 일 때, m 의 값을 구하여라. (단, 두 근은 양수이다.)

> 답: _____

이차함수의 최댓값 또는 최솟값은?

② 최솟값:4

7. 이차함수 $y = x^2 + 2ax + b$ 가 두 점 (1, 8), (-1, 4) 를 지날 때, 이

③ 최댓값: 1, 최솟값: 3 ④ 최댓값: 6

① 최댓값: 4

⑤ 최솟값: 1

8. 자연수 x 에 대하여 \sqrt{x} 이하의 자연수의 개수를 f(x) 라고 할 때, f(150) - f(99) 의 값은?

① 2개 ② 3개 ③ 4개 ④ 5개 ⑤ 6개

9. $\sqrt{(-6)^2} + (-2\sqrt{3})^2 - \sqrt{3}\left(\sqrt{24} - \frac{3}{\sqrt{3}}\right) = a + b\sqrt{2}$ 의 꼴로 나타낼 때, a+b 의 값은?(단, a, b 는 유리수)

- ① -15 ② 15 ③ -9 ④ 9 ⑤ 0

10. $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \dots + \frac{1}{\sqrt{8}+\sqrt{9}}$ 를 계산하면?

① 6 ② 5 ③ 4 ④ 3 ⑤ 2

11. 다음의 표는 제곱근표의 일부이다. 이 표를 이용하여 $\frac{1}{\sqrt{2}} \left(\sqrt{3} - \frac{9}{\sqrt{3}} \right)$ 의 값을 구하면?

수	0	1	2
1	1.000	1.005	1.010
2	1.414	1.418	1,421
3	1.732	1.735	1.738
4	2	2.002	2.005
5	2.236	2.238	2.241
6	2.449	2.452	2.454
7	2.646	2.648	2.650
8	2.828	2.830	2.832

① 1.414 ② -1.732 ③ 1.732 4 -2.4495 2.449

12. 다음은 x^4 – $81y^4$ 을 인수분해 한 것이다. 이 때, \square 안에 알맞은 세 자연수의 합을 구하면?

 $x^4 - 81y^4 = (x^2 + y^2)(x + y)(x - y)$

① 13 ② 15 ③ 18 ④ 20 ⑤ 24

13. 어떤 무리수 x가 있다. x의 소수 부분을 y라 할 때 x의 제곱과 y의 제곱의 합이 33이다. 무리수 x의 값은? (단, x > 0)

- ① $x = \frac{5 + \sqrt{41}}{2}$ ③ $x = \frac{5 + \sqrt{37}}{3}$ ⑤ $x = \frac{3 + \sqrt{37}}{4}$
- ② $x = \frac{2 + \sqrt{41}}{5}$ ④ $x = \frac{-2 + \sqrt{41}}{5}$

사람에게 돌아가는 공책의 수가 전체 학생 수보다 7 이 적다고 할 때, 한 명에게 돌아가는 공책의 수는?

14. 어느 반 학생들에게 공책 144권을 똑같이 나누어 주려고 한다. 한

① 6권 ② 9권 ③ 12권 ④ 16권 ⑤ 24권

- **15.** 이차함수 $y = ax^2$ 의 그래프가 두 점 (4, 8), $\left(b, \frac{9}{2}\right)$ 를 지난다. 이함수와 x 축 대칭인 이차함수가 (b, c) 를 지날 때, c 의 값은?(단, b < 0)
 - ① -2 ② $-\frac{5}{2}$ ③ 3 ④ $\frac{7}{2}$ ⑤ $-\frac{9}{2}$

- **16.** 이차함수 $y = ax^2 + bx + c$ 의 그래프의 꼭짓점의 좌표가 (2, 3) 일 때, 이 그래프가 제 2 사분면을 지나지 않을 a의 값의 범위는? (단, $a \neq 0$ 임) ① $a < -\frac{4}{3}$ ② $a \le -\frac{4}{3}$ ③ $a < \frac{3}{4}$ ④ $a \le -\frac{3}{4}$

17. 세 점 (-1, -5), (0, 5), (2, 13) 을 지나는 이차함수의 그래프의 꼭짓점의 좌표가 (p, q) 일 때, p-q 의 값은?

① 1 ② 5 ③ -5 ④ -1

18. 이차함수 $y = x^2 - 4kx + 2k^2 + k - 1$ 의 최솟값을 m 이라 할 때, m 의 최댓값은? ① $-\frac{7}{8}$ ② -1 ③ $\frac{1}{8}$ ④ 1 ⑤ $-\frac{9}{8}$

19. 이차함수 $y = -x^2 - 2kx + 4k$ 의 최댓값이 M 일 때, M 의 최솟값을 구하면?

① 1 ② -2 ③ 3 ④ -4 ⑤ 5

20. $\sqrt{\frac{2x}{k}}$ 의 정수 부분을 a 라고 할 때, a = 5 를 만족하는 x 의 개수가 11 개이다. 자연수 k 의 값을 구하여라. (단, $\frac{2x}{k}$ 는 자연수이다.)

> 답: k = _____

21. $x^2 + ax + 15$ 가 (x + b)(x + c)로 인수분해될 때, 상수 a의 최댓값을 구하여라.(단, a, b, c는 정수)

답: _____

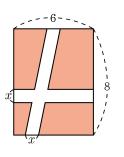
22.
$$a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}, \ b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
 일 때, $\sqrt{a^2 - ab + b^2 + 3}$ 의 값은?

 $5\sqrt{3}$ ② 10 ③ $10\sqrt{3}$ ④ $10\sqrt{6}$ ⑤ 15

23.
$$50\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdots\left(1-\frac{1}{10^2}\right)$$
 의 값을 구하여라.

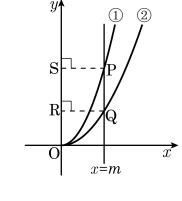
> 답: _____

값을 구하여라.


24. $2a^2x + ax - 15x = a + 3$ 을 만족하는 x 의 값이 없을 때, 상수 a 의

답: ____

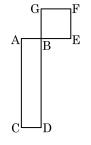
- **25.** $x^2-x-1=0$ 의 한 근이 m일 때, $\frac{m^{2n-1}}{(m^{n-1}+m^{n-2})(m^{n-2}+m^{n-3})}$ 의 값을 구하여라.
 - 답: ____


- 26. 다음 식의 값을 구하여라. $5 \frac{6}{5 \frac{6}{5 \frac{6}{5 \cdots}}}$
 - **)** 답: x = _____
 - **)** 답: x = _____

27. 다음 그림의 색칠한 부분의 넓이가 35 일 때, *x* 의 값을 구하여라.

🔰 답: _____

28. 다음 그림은 이차함수 $y=\frac{3}{4}x^2(x\geq 0)\cdots$ ①, $y=\frac{1}{3}x^2(x\geq 0)\cdots$ ②의 그래프이다. y축에 평행한 직선 x = m(m > 0)이 ①과 만나는 점을 P, ②와 만나는 점을 Q라 하고, 두 점 P,Q에서 y축에 내린 수선이 y축과 만나는 점을 각각 S,R이라 할 때, □PQRS가 정사각형이 되는 m의 값을 구하면?



- ① $\frac{3}{4}$ ② $\frac{4}{3}$ ③ $\frac{5}{12}$ ④ $\frac{12}{5}$ ⑤ $\frac{13}{5}$

29. 이차함수 $y = a(x-p)^2 + q$ 의 그래프가 점 (1, 0)을 지나고, 이 그래 프와 y축에 대하여 대칭인 그래프의 꼭짓점의 좌표가 (-3, -5)일 때, apq의 값을 구하여라.

답: _____

30. 다음 그림과 같이 선분 AB 의 연장선 위에 \overline{AB} : \overline{BE} = 2:3 이 되도록 점 E 를 잡고 선분 BE 를 한 변으로 하는 정사각형 BEFG 를 그릴 때, 선분 GD 의 길이는 12 이다. 이때 $\overline{AB}^2 + \overline{AC}^2$ 의 최솟값을 구하여라.

▶ 답: