(기) $\sqrt{4^2}$ 은 와 같다.	
(L) 제곱근 <u></u> 는 7 이다.	
(c) 제곱근 100 은 🗌 이다.	
① (¬) 16 (L) 49 (E) ±10	② (¬) 4 ($\mathrel{\vdash}$) 49 ($\mathrel{\vdash}$) ±10
③ (¬) 4 (∟) 49 (⊏) 10	④ (¬) -4 (∟) 7 (⊏) -10

 $oldsymbol{1}$. 다음 식에서 $oldsymbol{\square}$ 안에 들어갈 알맞은 숫자로 짝지어진 것은?

⑤ (¬) 4 (∟) 49 (⊏) −10

(기) $\sqrt{4^2} \Rightarrow 16$ 의 양의 제곱근 $\Rightarrow 4$

(L) 제곱근 $49 \Rightarrow 49$ 의 양의 제곱근 $\Rightarrow 7$ (□) 제곱근 100 ⇒ 100 의 양의 제곱근 ⇒ 10

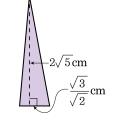
- **2.** a > 0 일 때, $\sqrt{(-2a)^2} \sqrt{9a^2}$ 을 간단히 하면?
 - ① -11a ② -7a ③ -5a ④ -a ⑤ a

해설 $\sqrt{4a^2} - \sqrt{9a^2} = 2a - 3a = -a$

3. $\sqrt{125x}$ 가 자연수가 되게 하는 가장 작은 자연수 x 의 값을 구하면?

- **4.** 두 실수 $\sqrt{5}$ 와 $\sqrt{10}$ 사이에 있는 실수가 <u>아닌</u> 것은?
- ① 3 ② $\sqrt{6}$ ③ $\frac{\sqrt{5} + \sqrt{10}}{2}$
- (4) $\sqrt{5} + 2$ (5) $2\sqrt{2}$
 - 해설
- ① $\sqrt{5} < \sqrt{3^2} < \sqrt{10}$ ② $\sqrt{5} < \sqrt{6} < \sqrt{10}$
- ③ 두 수의 평균은 항상 두 수 사이에 존재
- $4 2 < \sqrt{5} < 3$
- $\therefore 4 < \sqrt{5} + 2 < 5$

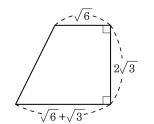
- 다음 그림과 같은 밑변의 길이가 $\dfrac{\sqrt{3}}{\sqrt{2}}\,\mathrm{cm}$, 높이가 $2\,\sqrt{5}\,\mathrm{cm}$ 인 삼각형의 넓이는? ① $\frac{\sqrt{30}}{5}$ cm² ② $\frac{\sqrt{30}}{3}$ cm² ② $\frac{\sqrt{30}}{2}$ cm² ④ $2\sqrt{30}$ cm² ⑤ $4\sqrt{30}$ cm²



해설 $S = \frac{1}{2} \times \frac{\sqrt{3}}{\sqrt{2}} \times 2\sqrt{5} = \frac{\sqrt{30}}{2} \text{ (cm}^2\text{)}$

6. 다음 그림에서 사다리꼴의 넓이는?

- ① $2\sqrt{6} + 3$
- ② $3\sqrt{6} + 3$
- ③ $4\sqrt{2} + 3$ ④ $5\sqrt{2} + 3$



(사다리꼴의넓이) = (윗변 + 아랫변) × (높이) ×
$$\frac{1}{2}$$

($\sqrt{6} + \sqrt{6} + \sqrt{3}$) × $2\sqrt{3} \times \frac{1}{2} = (2\sqrt{6} + \sqrt{3})\sqrt{3} = 6\sqrt{2} + 3$

7. 한 변의 길이가 각각 $\sqrt{7} \, \mathrm{cm}$, $\sqrt{10} \, \mathrm{cm}$ 인 정사각형 두 개가 있다. 이 두 정사각형의 넓이를 합하여 하나의 큰 정사각형으로 만들 때, 큰 정사각형의 한 변의 길이를 구하여라.

답: <u>cm</u>
 > 정답: √17 <u>cm</u>

VII <u>on</u>

 $(\sqrt{7})^2 + (\sqrt{10})^2 = 17$ 이다.

해설

따라서 큰 정사각형의 한 변의 길이는 17 의 양의 제곱근인 √17(cm) 이다.

8. a > 0 일 때, 다음 보기 중 옳은 것은 모두 몇 개인가?

① 1 개 ② 2 개 ③ 3 개 <mark>④</mark> 4 개 ⑤ 5 개

 $\bigcirc -\sqrt{a^2} = -a$

9. $a = -\sqrt{5}, b = \sqrt{3}$ 일 때, $2a^2 - (-b)^2$ 의 값을 구하여라.

▶ 답:

정답: 7

$$2a^{2} - (-b)^{2} = 2(-\sqrt{5})^{2} - (-\sqrt{3})^{2}$$
$$= 2 \times 5 - 3 = 7$$

- **10.** 0 < a < 5 일 때, $\sqrt{a^2} + |5 a| \sqrt{(a 6)^2}$ 을 간단히 하면?(단, |x| 는 x 의 절댓값을 나타낸다.)
 - $4 \ 2a 3$ $3 \ 2a 1$
 - ① a-1 ② a+1 ③ 3

 $0 < a < 5 \text{ on } |A| \ a > 0, \ 5 - a > 0, \ a - 6 < 0$ $\sqrt{a^2 + |5 - a|} - \sqrt{(a - 6)^2}$

= a - 1

= |a| + |5 - a| - |a - 6|= a + 5 - a + a - 6

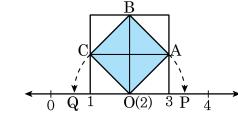
해설

11. $\sqrt{(\sqrt{3}-1)^2} + \sqrt{(\sqrt{3}-2)^2}$ 을 계산하여라.

▶ 답:

▷ 정답: 1

 $\sqrt{3}-1 > 0$ 이므로 $\sqrt{(\sqrt{3}-1)^2} = \sqrt{3}-1$ $\sqrt{3}-2 < 0$ 이므로 $\sqrt{(\sqrt{3}-2)^2} = -(\sqrt{3}-2) = -\sqrt{3}+2$ $\therefore \sqrt{(\sqrt{3}-1)^2} + \sqrt{(\sqrt{3}-2)^2}$ $= \sqrt{3}-1-\sqrt{3}+2=1$ 12. 다음 그림은 한 변의 길이가 2 인 정사각형의 각 변의 중점을 연결하여 $\square OABC$ 를 그린 것이다. $\overline{OA}=\overline{OP}$, $\overline{OC}=\overline{OQ}$ 일 때, 점 P, Q 의 좌표를 각각 a, b 라고 할 때, a+b 의 값을 구하여라.



▶ 답: **> 정답:** a+b=4

($\square OABC 넓이) = 2 \times 2 - 4 \times \left(\frac{1}{2} \times 1 \times 1\right) = 2$ $\therefore \overline{\mathrm{OC}} = \overline{\mathrm{OA}} = \sqrt{2}$ $\therefore \ \mathrm{P}(2+\sqrt{2})$, $\mathrm{Q}(2-\sqrt{2})$ 이므로 a+b=4이다.

13. 다음 보기의 설명 중 옳지 <u>않은</u> 것을 모두 고른 것은?

- ⑤ $\sqrt{2}$ 와 $\sqrt{3}$ 사이에는 무수히 많은 유리수가 있다.
- 두 정수 사이에는 또 다른 정수가 있다.
- © $\sqrt{5}$ 와 $\sqrt{7}$ 사이에는 무수히 많은 무리수가 있다.

④ □,⊜,□

① ①,Û

② □,@ ⑤ ¬,□,@,@

③ ¬,□,⊜

해설

① 두 정수 사이에는 또 다른 정수가 있다, 바레) 1 과 2 사이에는 저스가 조재하지 않.

반례) 1 과 2 사이에는 정수가 존재하지 않는다. ② 서로 다른 무리수의 합은 항상 무리수이다. 반례) $\sqrt{3} + (-\sqrt{3}) = 0$ 유리수가 되는 경우도 존재한다.

14. 다음 중 두 실수의 대소 관계로 옳은 것은?

- $\bigcirc 3 < \sqrt{3} + 1$
- \bigcirc $\sqrt{3} + 1 < \sqrt{2} + 1$ © $\sqrt{15} + 1 < 4$ @ $4 - \sqrt{7} < \sqrt{17} - \sqrt{7}$

- ① ①, C ② ①, @ ③ C, C ④ C, O ⑤ @, O

 $\bigcirc 3 - (\sqrt{3} + 1) = 2 - \sqrt{3} = \sqrt{4} - \sqrt{3} > 0$

- $\begin{array}{ccc} \therefore & 3 > \sqrt{3} + 1 \\ \text{(L)} & \sqrt{3} + 1 \left(\sqrt{2} + 1\right) = \sqrt{3} \sqrt{2} > 0 \end{array}$
- $\therefore \sqrt{3} + 1 > \sqrt{2} + 1$
- \bigcirc $\sqrt{15} + 1 4 = \sqrt{15} 3 = \sqrt{15} \sqrt{9} > 0$ $\therefore \sqrt{15} + 1 > 4$
- $\stackrel{\text{\tiny (2)}}{=} 4 \sqrt{7} (\sqrt{17} \sqrt{7}) = 4 \sqrt{17}$ $= \sqrt{16} \sqrt{17} < 0$
- $\therefore 4 \sqrt{7} < \sqrt{17} \sqrt{7}$ \bigcirc $\sqrt{11} - \sqrt{7} - (-\sqrt{7}) = \sqrt{11} > 0$
- $\therefore \quad \sqrt{11} \sqrt{7} > -\sqrt{7}$

따라서 옳은 것은 ②, ②이다.

15. $2\sqrt{133} \div \frac{1}{\sqrt{7}} \div \frac{1}{\sqrt{19}}$ 를 간단히 하여라.

답:

▷ 정답: 266

 $2\sqrt{133} \div \frac{1}{\sqrt{7}} \div \frac{1}{\sqrt{19}} = 2\sqrt{133} \times \sqrt{7} \times \sqrt{19}$ $= 2\sqrt{133 \times 7 \times 19}$ $= 2\sqrt{133^2}$ = 266

16. $\frac{4\sqrt{6}}{\sqrt{3}} + \sqrt{162}$ 를 간단히 하여라.

답:

▷ 정답: 13 √2

해설 $(준식) = \frac{4\sqrt{6}\sqrt{3}}{\sqrt{3}\sqrt{3}} + \sqrt{9\times9\times2}$ $= \frac{4\times3\sqrt{2}}{3} + 9\sqrt{2}$ $= 4\sqrt{2} + 9\sqrt{2}$ $= 13\sqrt{2}$

17. $\frac{a}{b}=\frac{d}{c}=\frac{c}{d}$ 이고 $b=\sqrt{3},\ c=\sqrt{5}$ 일 때, (a-b)(c+d) 의 값을 구하여라. (단, $a>0,\ d>0$)

 ► 답:

 ▷ 정답:
 0

 $\frac{d}{c} = \frac{c}{d}$ 에서 $\frac{d}{\sqrt{5}} = \frac{\sqrt{5}}{d}$ 이면 $d = \sqrt{5}$ $\frac{a}{d} = \frac{d}{d}$ 에서 $\frac{a}{d} = 1$ 이면 $a = \sqrt{3}$

 $\frac{a}{b} = \frac{d}{c}$ 에서 $\frac{a}{\sqrt{3}} = 1$ 이면 $a = \sqrt{3}$ $\therefore (a-b)(c+d) = (\sqrt{3} - \sqrt{3})(\sqrt{5} + \sqrt{5})$ $= 0(\sqrt{5} + \sqrt{5}) = 0$

- 18. 다음 중 두 수의 대소 관계를 바르게 나타낸 것을 모두 고르면?
 - ① $\sqrt{3} 1 < \sqrt{3} + 1$ ② $1 > \sqrt{2}$ ③ $\sqrt{5} - 2 > \sqrt{5} - 1$ ④ $0 > \sqrt{3} - 2$
 - $\sqrt{2} + 2 < 2\sqrt{2}$

① $\sqrt{3} - 1 < \sqrt{3} + 1$

- ② $1 < \sqrt{2}$
- ③ $\sqrt{5} 2 < \sqrt{5} 1$
- $40 > \sqrt{3} 2$
- ⑤ $\sqrt{2} + 2 < 2\sqrt{2}$
- 양변에 $-\sqrt{2}$ 를 더하면 $-\sqrt{2} + \sqrt{2} + 2 < 2\sqrt{2} - \sqrt{2}$
- $2 < \sqrt{2}$ 는 모순

19. 다음 표는 제곱근표의 일부분이다. 다음 중 주어진 표를 이용하여 그 값을 구할 수 <u>없는</u> 것은?

수	0	1	2	3
2.6	1.612	1.616	1.619	1.622
2.7	1.643	1.646	1.649	1.652
2.8	1.673	1.676	1.679	1.682
2.9	1.703	1.706	1.709	1.712

 $\sqrt{283}$

① $\sqrt{2.61}$

 $\bigcirc \sqrt{27.2}$ ④ $\sqrt{2.93}$

① $\sqrt{2.61} = 1.616$

해설

② $\sqrt{27.2} = \sqrt{2.72 \times \frac{1}{10}}$ \therefore 주어진 표를 이용하여 구할 수 없다. $3\sqrt{283} = \sqrt{2.83 \times 100} = 10\sqrt{2.83} = 16.82$

 $4 \sqrt{2.93} = 1.712$

20. 제곱근표에서 $\sqrt{2}=1.414,\ \sqrt{5}=2.236$ 일 때, $\sqrt{20}-(\sqrt{2}-\sqrt{5})$ 의 값을 구하여라.

답:▷ 정답: 5.294

 $\sqrt{20} - (\sqrt{2} - \sqrt{5}) = 2\sqrt{5} - \sqrt{2} + \sqrt{5}$ $= 3\sqrt{5} - \sqrt{2}$ $= 3 \times 2.236 - 1.414$ = 6.708 - 1.414 = 5.294

21. $\sqrt{27}$ 의 소수 부분을 a 라고 할 때, a(a+10)-5 의 값을 구하여라.

▶ 답:

▷ 정답: -3

해설 $5 < \sqrt{27} < 6$ 이므로 $a = \sqrt{27} - 5$

 $a+5=\sqrt{27}$ 의 양변을 제곱하면 $a^2+10a+25=27$

 $a^2 + 10a = 2$

 $\therefore a(a+10) - 5 = a^2 + 10a - 5 = 2 - 5 = -3$

22. $\sqrt{120-x} - \sqrt{5+x}$ 의 값이 가장 큰 자연수가 되도록 하는 자연수 x 의 값을 구하여라.

답:

▷ 정답: x = 20

 $\sqrt{120-x}$, $\sqrt{5+x}$ 둘 다 자연수가 되어야 한다. $\sqrt{120-x}$ 가

최대 $\sqrt{5+x}$ 가 최소가 되려면 x=20 이어야 한다.

23. $\sqrt{3n}$ 이 2 와 4 사이의 수가 되게 하는 정수 n 의 개수는 몇 개인가?

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

 $2 < \sqrt{3n} < 4$

4 < 3n < 16

 $\therefore n = 2, 3, 4, 5$

24. $\frac{k(2\sqrt{2}-\sqrt{3})}{\sqrt{3}}-2\sqrt{3}+2\sqrt{3}(1-\sqrt{2})$ 가 유리수가 되도록 하는 유리수 k 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

해설 $\frac{k(2\sqrt{2}-\sqrt{3})}{\sqrt{3}} - 2\sqrt{3} + 2\sqrt{3}(1-\sqrt{2})$ $= \frac{k(2\sqrt{2}-\sqrt{3})\sqrt{3}}{3} - 2\sqrt{3} + 2\sqrt{3} - 2\sqrt{6}$ $= \frac{2k\sqrt{6}}{3} - k - 2\sqrt{6}$ $= \left(\frac{2}{3}k - 2\right)\sqrt{6} - k$ 값이 유리수가 되어야 하므로 $\frac{2}{3}k - 2 = 0$ $\therefore k = 3$

①
$$1*1 = -\frac{1+\sqrt{3}}{2}$$
 ② $2*1 = 2+\sqrt{3}$
③ $3*2 = -\frac{3+2\sqrt{3}}{3}$ ④ $5*3 = -\frac{5+3\sqrt{3}}{2}$
⑤ $7*4 = -\frac{7+4\sqrt{3}}{2}$

$$2 \cdot 2 * 1 = 2 + \mathbf{V} \cdot 5 + 3$$

$$4 \quad 5 * 3 = -\frac{5+3}{2}$$

$$(3)$$
 7 * 4 = $-\frac{1}{2}$

해설
$$7*4 = \frac{1}{7 - 4\sqrt{3}} = 7 + 4\sqrt{3}$$