- 1. $\frac{\sqrt{18}}{\sqrt{6}}\div\frac{\sqrt{3}}{\sqrt{10}}$ 을 간단히 하였더니 \sqrt{a} 이고, $\sqrt{48}\div\sqrt{12}$ 를 간단히 하였더니 \sqrt{b} 일 때, 자연수 a+b 의 값은?
 - ① 3 ② 6 ③ 14 ④ 18 ⑤ 24

해설
$$\sqrt{\frac{18}{6} \times \frac{10}{3}} = \sqrt{10} \text{ 이므로 } a = 10$$

$$\sqrt{\frac{48}{12}} = \sqrt{4} \text{ 이므로 } b = 4$$
 따라서 $a+b=10+4=14$ 이다.

$$\sqrt{\frac{1}{12}} = \sqrt{4}$$
 이브로 $b = 4$

2. $\sqrt{2} = x$, $\sqrt{5} = y$ 라고 할 때, $\sqrt{10}$ 을 x, y 를 써서 나타내어라.

답:

ightharpoonup 정답: $\sqrt{10} = xy$

 $\sqrt{10} = \sqrt{2} \times \sqrt{5} = xy$

다음 중 옳지 않은 것은? 3.

①
$$\frac{\sqrt{15}}{\sqrt{3}} = \sqrt{5}$$
 ② $\frac{\sqrt{120}}{\sqrt{6}} = 2\sqrt{5}$ ③ $\frac{\sqrt{48}}{\sqrt{3}} = 4$ ④ $\frac{\sqrt{18}}{\sqrt{5}} = 4\sqrt{10}$ ⑤ $\frac{\sqrt{18}}{\sqrt{2}} = 3$

$$2 \frac{\sqrt{120}}{\sqrt{6}} = \sqrt{20} = 2$$

$$3 \frac{\sqrt{48}}{\sqrt{3}} = \sqrt{16} = 4$$

$$2 \frac{\sqrt{120}}{\sqrt{6}} = \sqrt{20} = 2\sqrt{5}$$

$$3 \frac{\sqrt{48}}{\sqrt{3}} = \sqrt{16} = 4$$

$$4 \frac{\sqrt{200}}{\sqrt{5}} = \sqrt{40} = 2\sqrt{10}$$

$$5 \frac{\sqrt{18}}{\sqrt{2}} = \sqrt{9} = 3$$

$$\int \frac{\sqrt{2}}{\sqrt{2}} = \sqrt{9} = 3$$

다음 식을 간단히 하면? **4.**

$$\sqrt{12} + \sqrt{3} - \sqrt{48}$$

① $-\sqrt{3}$ ② $\sqrt{3}$ ③ $2\sqrt{3}$

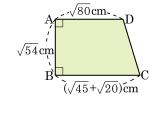
해설

 $4 - 2\sqrt{3}$ $5 7\sqrt{3}$

 $\sqrt{12} + \sqrt{3} - \sqrt{48} = 2\sqrt{3} + \sqrt{3} - 4\sqrt{3}$ = $-\sqrt{3}$

5. 다음을 계산하여라.

$$\sqrt{12^2} \times \sqrt{\frac{(-2)^2}{9}} - (-\sqrt{6})^2 \div \sqrt{\left(\frac{3}{2}\right)^2}$$


답:▷ 정답: 4

V 06.

$$\sqrt{12^2} \times \sqrt{\frac{(-2)^2}{9}} - (-\sqrt{6})^2 \div \sqrt{\left(\frac{3}{2}\right)^2}$$

$$= 12 \times \frac{2}{3} - 6 \div \frac{3}{2} = 4$$

- 다음 그림과 같은 사다리꼴 ABCD 의 넓 6.
 - - ① $13\sqrt{30} \text{ cm}^2$ ③ $14\sqrt{30} \text{ cm}^2$
- - ⑤ $15\sqrt{30}\,\mathrm{cm}^2$

(사다리꼴의 넓이)

7. 다음 중 옳은 것은?

- ① a > 0 일 때, a 의 제곱근은 \sqrt{a} 이다. ② $\sqrt{16}$ 의 제곱근은 ± 2 이다.
- ③ 1.6 의 제곱근은 ±0.4 이다.
- ④ 0의 제곱근은 없다.
- ⑤ a < 0 일 때, $\sqrt{(-a)^2} = a$ 이다.

① a > 0 일 때, a 의 제곱근은 $\pm \sqrt{a}$ 이다.

해설

- ③ 1.6 의 제곱근은 $\pm\sqrt{1.6}$ 이다.
- ④ 0 의 제곱근은 0 이다.
- ⑤ a < 0 일 때, $\sqrt{(-a)^2} = -a$ 이다.

8. $\frac{10^{12}}{20^6} = \sqrt{25^a}$, $\sqrt{\frac{3^{12}}{3^4}} = 3^b$ 일 때, a + b 의 값을 구하면?

① 5 ② 10 ③ 15 ④ 20 ⑤ 25

해설 $\frac{10^{12}}{20^6} = \frac{10^{12}}{2^6 \times 10^6} = \frac{10^6}{2^6} = 5^6 = \sqrt{25^6}, a = 6$ $\sqrt{\frac{3^{12}}{3^4}} = \sqrt{3^8} = 3^4, b = 4$ $\therefore a + b = 10$

9. 다음 중 옳지 <u>않은</u> 것을 <u>모두</u> 골라라.

a > 0 일 때, $\sqrt{(-3)^2 a^2} \times \sqrt{4a^2} = 6a^2$ a < 0 일 때, $\sqrt{25a^2} - \sqrt{(-6a)^2} = -a$ a < 0, b > 0 일 때, $\sqrt{100a^2} - 5\sqrt{4b^2} = 10(a - b)$ a > 0, b < 0 일 때, $\sqrt{(4a)^2} - \sqrt{(-b)^2} - \sqrt{(6b)^2} = 2a + 7b$

▶ 답:

▶ 답:

▶ 답:

 ▷ 정답:
 ©

 ▷ 정답:
 ©

▷ 정답: ②

해설

 $\bigcirc a < 0$ 일 때, $\sqrt{25a^2} - \sqrt{(-6a)^2} = -5a - (-6a) = a$

(章 a < 0, b > 0 일 때, $\sqrt{100a^2 - 5\sqrt{4b^2}} = -10a - 5 \times 2b = -10(a + b)$

 $\sqrt{(4a)^2} - \sqrt{(-b)^2} - \sqrt{(6b)^2} = 4a + 7b$

10.
$$-1 < a < 2$$
 일 때, $\sqrt{(a+1)^2} + \sqrt{(a-2)^2} + a - 3$ 을 간단히 하면?

① a

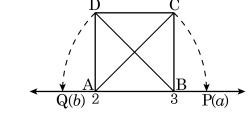
② 3a-4 ③ 0 $\textcircled{3} \ a-6$ $\textcircled{5} \ 3a+1$

-1 < a < 2 에서 a+1>0 , a-2<0 이므로 (준식)= a+1-(a-2)+a-3=a

11. 다음 중 순환하지 않는 무한소수가 되는 것은 모두 몇 개인지 구하여라.

 $\sqrt{0.9}$, $2\sqrt{6}$, $\sqrt{0.04}$, $\sqrt{\frac{2}{4}}$, $\sqrt{9} - \sqrt{3}$

답: <u>개</u>


정답: 3<u>개</u>

순환하지 않는 무한소수는 무리수이다.

 $\sqrt{0.9} = \sqrt{\frac{9}{9}} = 1$, $\sqrt{0.04} = 0.2$ 유리수이다.

따라서 $2\sqrt{6}$, $\sqrt{\frac{2}{4}}$, $\sqrt{9}$ — $\sqrt{3}$ 이 무리수이다.

12. 다음 그림과 같이 수직선 위에 한 변의 길이가 1 인 정사각형 ABCD의 대각선 $\overline{AC}=\overline{AP},\;\overline{BD}=\overline{BQ}$ 인 두 점 P,Q를 수직선 위에 잡았을 때, P(a), Q(b) 에 대하여 다음 중 옳은 것은?

 \bigcirc $\overline{PQ} = -1 + 4\sqrt{2}$

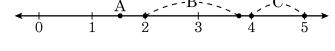
 $\bigcirc Q(b) = 3 - 2\sqrt{2}$

(5) (**2**), (**0**)

 \bigcirc $\overline{AP} = \sqrt{2}$

2 ¬, © 3 ©, © **4**¬, © ① ①, 心

해설


13. 다음 중 옳지 <u>않은</u> 것은?

- ① -2 와 2 사이에는 정수가 3 개 있다.
- ② 두 자연수 1 과 2 사이에는 무수히 많은 유리수가 존재한다. ③ $\frac{1}{7}$ 은 순환하는 무한소수이다.
- \bigcirc $\sqrt{3}$ 과 $\sqrt{8}$ 사이에는 무리수가 4 개 있다.
- ⑤ $\sqrt{7}$ 과 5 사이에는 무수히 많은 무리수가 있다.

④ 무수히 많은 무리수가 있다.

해설

14. 보기의 내용은 다음의 수직선을 보고 설명한 것이다. 다음 중 <u>틀린</u> 것은 모두 몇 개인가?

보기 \bigcirc $\sqrt{17}$ 은 C 구간에 위치한다.

- \bigcirc $-\sqrt{2}+3$ 은 점 A 에 대응한다.
- © B 구간에 존재하는 유리수는 유한개다.
- ② C 구간에 있는 무리수 \sqrt{n} 의 개수는 10 개이다. (단, n
- 은 자연수이다.) \bigcirc $\sqrt{19}-4$ 는 점 A 의 왼편에 위치한다.

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

© B 구간에 존재하는 유리수는 무한개이다. ② C 구간에 있는 무리수 \sqrt{n} 의 개수는 $\sqrt{17} \sim \sqrt{24}$, 총 8 개이

다.

- ${f 15.}$ $x^2=4$, $y^2=9$ 이고 x-y 의 최댓값을 ${f M}$, 최솟값을 ${f m}$ 이라 할 때, *M* − *m* 의 값은?

 - ① -10 ② -5 ③ 0 ④ 5
- **(5)**10

해설 $x = \pm 2, \ y = \pm 3$

x - y = -1, 5, -5, 1

 $\therefore M - m = 5 - (-5) = 10$

16. 다음 보기의 수를 각각 제곱근으로 나타낼 때, 근호를 사용하지 않아도 되는 것을 모두 고르면?

해설
① $\sqrt{36} = 6$ 이므로 6 의 제곱근은 $\pm \sqrt{6}$ 이다.
© $\sqrt{(-3)^2} = 3$ 이므로 3 의 제곱근은 $\pm \sqrt{3}$ 이다.
② (1.6 의 제곱근) $= \pm \sqrt{1.6}$ (1.6 은 제곱수가 아니다.)

(由) $\left(\frac{81}{6}$ 의 제곱그) $=\pm\frac{9}{\sqrt{6}}$

 $17. \quad \sqrt{22} \times \sqrt{\frac{8}{77}} \times \sqrt{28} = 4\sqrt{x}$ 일 때, 양수 x 의 값을 구하여라.

▶ 답:

▷ 정답: x = 4

$$\sqrt{22} \times \sqrt{\frac{8}{77}} \times \sqrt{28} = \sqrt{22 \times \frac{8}{77} \times 28}$$
$$= 8 = 4\sqrt{4}$$
$$4\sqrt{x} = 4\sqrt{4}$$
이므로 $x = 4$

$$4\sqrt{x} = 4\sqrt{4} \text{ } \square \subseteq \Sigma \text{ } x = 4$$

18. $\frac{k(2\sqrt{2}-\sqrt{3})}{\sqrt{3}}-2\sqrt{3}+2\sqrt{3}(1-\sqrt{2})$ 가 유리수가 되도록 하는 유리수 k 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

해설 $\frac{k(2\sqrt{2}-\sqrt{3})}{\sqrt{3}} - 2\sqrt{3} + 2\sqrt{3}(1-\sqrt{2})$ $= \frac{k(2\sqrt{2}-\sqrt{3})\sqrt{3}}{3} - 2\sqrt{3} + 2\sqrt{3} - 2\sqrt{6}$ $= \frac{2k\sqrt{6}}{3} - k - 2\sqrt{6}$ $= \left(\frac{2}{3}k - 2\right)\sqrt{6} - k$ 값이 유리수가 되어야 하므로 $\frac{2}{3}k - 2 = 0$ $\therefore k = 3$

19. $\sqrt{56 \times a}$ 가 자연수가 되게 하는 a 의 값 중에서 가장 작은 세 자리의 자연수와 가장 큰 세 자리의 자연수의 합을 구하여라.

답:

➢ 정답: 1022

 $\sqrt{56 \times a} = \sqrt{2^2 \times 14 \times a}$

 $\therefore a = 14 \times x^2$ $100 \le 14 \times x^2 < 1000$

 $x^2 = 9$, 16, 25, 36, 49, 64 a = 126, 224, 350, 504, 686, 896

가장 작은 세 자리의 수:126 가장 큰 세 자리의 수:896

126 + 896 = 1022

20. $-4\sqrt{3} \le x < \sqrt{26}$, $2\sqrt{2} < \sqrt{\frac{y}{2}} \le 5$ 를 만족하는 정수 x , y 에 대해 y-x 의 값의 최댓값을 구하여라.

▶ 답:

▷ 정답: 56

y-x 의 값의 최댓값은 y 가 최대일 때, x 가 최소일 때이다. $-4\sqrt{3} \le x < \sqrt{26}$ 이 성립하는 정수 x 의 최솟값은 -6 $2\sqrt{2} < \sqrt{\frac{y}{2}} \le 5$ 을 정리하면 $8 < \frac{y}{2} \le 25$, 즉 $16 < y \le 50$ 이므로 정수 y 의 최댓값은 50따라서 y-x 의 최댓값은 50-(-6)=56 이다.