- 1. 다음 중 그 값이 다른 것을 고르면?
  - ① 13 의 제곱근
  - ② (-√13)² 의 제곱근
  - ③  $x^2 = 13$  을 만족시키는 수 x
  - ④ 제곱근 13
     ⑤ √13² 의 제곱근

해설

①, ②, ③, ⑤  $\pm \sqrt{13}$ 

④ (제곱근 13) = (13 의 양의 제곱근) = √13

## **2.** $(-\sqrt{5})^2$ 의 제곱근은?

①  $\sqrt{5}$  ②  $-\sqrt{5}$  ③  $\pm \sqrt{5}$  ④ 5 ⑤  $\pm 5$ 

 $(-\sqrt{5})^2 = 5$ 5 의 제곱근:  $\pm \sqrt{5}$ 

① 2 ② 4 ③ 6 ④ 8 ⑤ 10

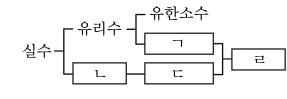
**3.**  $\sqrt{10+x}$  의 값이 가장 작은 자연수가 되도록 하는 자연수 x 의 값은?

해설  $\sqrt{10+x} = 4$  $\therefore x = 6$ 

4. 
$$\sqrt{(\sqrt{7}-3)^2} - \sqrt{(3-\sqrt{7})^2}$$
 을 간단히 하면?

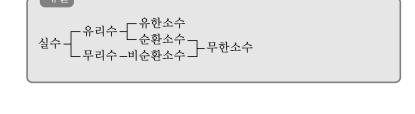
① 0 ②  $6-2\sqrt{7}$  ③ 6 ④  $\sqrt{6}$  ⑤  $3+\sqrt{7}$ 

 $\sqrt{7} < 3 = \sqrt{9} \text{ 이므로}$   $\sqrt{\left(\sqrt{7} - 3\right)^2} - \sqrt{\left(3 - \sqrt{7}\right)^2}$   $= \left|\sqrt{7} - 3\right| - \left|3 - \sqrt{7}\right|$   $= -\left(\sqrt{7} - 3\right) - \left(3 - \sqrt{7}\right)$   $= -\sqrt{7} + 3 - 3 + \sqrt{7} = 0$ 


- 5. 다음 중 무리수에 대한 설명이 아닌 것을  $\underline{\mathsf{PF}}$  고르면? (정답 2개)
  - ③ 유 한 소 수
  - ① 순환하지 않는 무한소수 ② 분수로 나타낼 수 없는 수

해설

- ④ 순환소수
- ⑤ 유리수가 아닌 수


③ ④ 유한소수, 순환소수는 유리수이다.

6. 다음은 실수를 분류한 표이다. □안에 들어갈 말로 바르게 짝지어진 것을 <u>모두</u> 고르면? (정답 2개)



- ① ㄱ. 비순환소수
- ② ㄴ. 무리수
- ③ ㄹ. 무한소수
- ③ ㄷ. 무한소수 ④ ㄷ. 순환소수





7. 다음 중 두 수의 대소 관계가 옳은 것의 개수는?

©  $\sqrt{2} + 4 < \sqrt{3} + 4$ ©  $-\sqrt{(-3)^2} + 2 > -\sqrt{10} - 1$ ©  $\frac{1}{2} < \frac{1}{\sqrt{2}}$  $\bigcirc$  4 -  $\sqrt{2}$  > 2 +  $\sqrt{2}$ 

① 1개 ② 2개 ③ 3개 ④4개

⑤ 5개

ⓐ  $4 - \sqrt{2} - 2 - \sqrt{2} = 2 - 2\sqrt{2} = \sqrt{4} - \sqrt{8} < 0$ ∴  $4 - \sqrt{2} < 2 + \sqrt{2}$ 

8. 다음 수 중에서  $\sqrt{3}$  과  $\sqrt{5}$  사이에 있지 <u>않은</u> 것은?

① 
$$\sqrt{3} + 0.1$$
 ②  $\sqrt{3} + 0.01$  ③  $\sqrt{5} - 0.01$  ④  $\frac{\sqrt{3} + \sqrt{5}}{2}$  ⑤  $\sqrt{5} - \sqrt{3}$ 

- 9.  $a^2 = 15$  일 때, a 의 값으로 옳은 것은?
  - ①  $-\sqrt{15}$
- ②  $\sqrt{15}$  ③  $\pm 3\sqrt{5}$

a 는 15 의 제곱근이므로  $\pm \sqrt{15}$  이다.

- . 다음 중 제곱근을 나타낼 때, 근호를 사용하여 나타내야만 하는 것을 모두 고르면?
  - $\sqrt{36}$  ② 169 ③ 3.9 ④  $\frac{98}{2}$ 0.4

 $(\sqrt{36}$  의 제곱근)= 6 의 제곱근은  $\pm\sqrt{6}$  ②  $169=13^2$  이므로 169 의 제곱근은  $\pm13$ 

- $3.\dot{9} = \frac{36}{9} = 4$  이므로  $3.\dot{9}$  의 제곱근은  $\pm 2$  ④  $\frac{98}{2} = 49$  이므로  $\frac{98}{2}$  의 제곱근은  $\pm 7$
- ⑤ 0.4 의 제곱근은 ± √0.4

**11.** 
$$a > 0$$
 ,  $b < 0$  일 때,  $\sqrt{(2a)^2} + \sqrt{(-a)^2} - \sqrt{(5b)^2}$  을 간단히 하면?

- ① a-5b ② a+5b ③ 3a-5b
- 3a + 5b  $\textcircled{5} \ 5a 5b$

2a + a - (-5b) = 3a + 5b

**12.**  $\sqrt{52-x} = 7$  을 만족하는 x 의 값을 구하여라.

답:

 ▶ 정답: x = 3

 $\sqrt{52-x}=7$ 

해설

52 - x = 49 $\therefore x = 3$ 

13. 다음 보기에서 유리수는 몇 개인지 구하여라.

 $-\sqrt{3}$ , 2.3683..., 0.1,  $\frac{3}{5}$ ,  $\sqrt{4}$ ,  $\sqrt{\frac{1}{5}}$ 

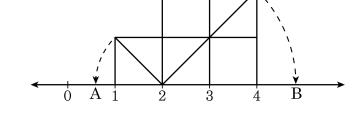
개

▷ 정답: 3<u>개</u>

▶ 답:

 $0.\dot{1}=\frac{1}{9},\,\frac{3}{5},\,\,\sqrt{4}=2$  는 유리수이다.  $-\sqrt{3},\,2.3683\cdots,\,\,\sqrt{\frac{1}{5}}$  는 무리수이다. 따라서 유리수는 3개이다.

## **14.** 다음 중 항상 성립하는 것은?


- ① (무리수) + (유리수) = (무리수) ② (무리수) + (무리수) = (무리수)
- ③ (무리수) × (무리수) = (무리수)
- ④ (무리수) ÷ (무리수) = (무리수) ⑤ (유리수) × (무리수) = (무리수)

## ② $\sqrt{2} + (-\sqrt{2}) = 0$ : 유리수

해설

- ③  $\sqrt{2} \times \sqrt{2} = 2$ : 유리수 ④  $\sqrt{2} \div \sqrt{2} = 1$ : 유리수
- ④  $\sqrt{2} \div \sqrt{2} = 1$  : 유리수 ⑤  $0 \times \sqrt{2} = 0$  : 유리수

15. 다음 수직선 위의 두 점 A, B 에 대응하는 수를 각각 A, B 라고 할 때 선분 AB 의 길이를 구하 여라.



▶ 답:

ightharpoonup 정답:  $3\sqrt{2}$ 

작은 정사각형의 대각선의 길이는  $\sqrt{2}$ 

해설

큰 정사각형의 대각선의 길이는  $2\sqrt{2}$  $A = 2 - \sqrt{2}, B = 2 + 2\sqrt{2}$  $\overline{AB} = 2 + 2\sqrt{2} - (2 - \sqrt{2}) = 3\sqrt{2}$ 

## 16. 다음 보기의 설명 중 옳지 <u>않은</u> 것을 모두 고른 것은?

- ⑤  $\sqrt{2}$  와  $\sqrt{3}$  사이에는 무수히 많은 유리수가 있다.
- © 두 정수 사이에는 또 다른 정수가 있다.
- $\bigcirc$   $\sqrt{5}$  와  $\sqrt{7}$  사이에는 무수히 많은 무리수가 있다.
- ② 서로 다른 무리수의 합은 항상 무리수이다.

 $\bigcirc$  1 과 2 사이에는 무수히 많은 유리수가 있다.

④ ∟,⊜,□

① ①,Û

**②**□,⊜ ③ ¬,□,⊜,⊕

3 ¬,□,⊜

© 두 정수 사이에는 또 다른 정수가 있다, 반례) 1 과 2 사이에는 정수가 존재하지 않는다.

② 서로 다른 무리수의 합은 항상 무리수이다. 반례)  $\sqrt{3} + (-\sqrt{3}) = 0$  유리수가 되는 경우도 존재한다.

 $oldsymbol{17.} \quad A=\sqrt{5}+\sqrt{3} \; , \; B=\sqrt{5}+1 \; , \; C=3+\sqrt{3} \;$ 일 때, 가장 작은 수는?

① A 4 A = C

③ C

해설

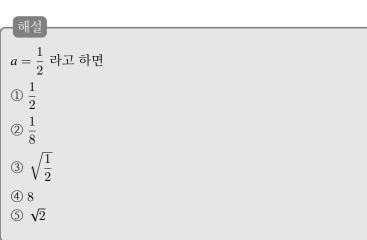
 $A - B = (\sqrt{5} + \sqrt{3}) - (\sqrt{5} + 1) = \sqrt{3} - 1 > 0$  $\therefore A > B$  $A - C = (\sqrt{5} + \sqrt{3}) - (3 + \sqrt{3}) = \sqrt{5} - 3 < 0$  $\therefore A < C$ 따라서 B < A < C 이다.

- 18. 25 의 음의 제곱근과 어떤 수의 양의 제곱근을 더하였더니 -1 이 되었다. 어떤 수는?
  - ① 4 ② 9 ③ 16 ④ 36 ⑤ 49

25 의 음의 제곱근: -5

-5+□=-1, □=4 4는 16의 양의 제곱근 **19.** -2 < x < 3 일 때,  $\sqrt{(x+2)^2} - \sqrt{(x-3)^2} + 2|3-x|$  를 간단히 하여라.

▶ 답:


➢ 정답: 5

-2 < x < 3 일 때,

 $\sqrt{(x+2)^2} - \sqrt{(x-3)^2} + 2|3-x|$  = x+2+x-3+6-2x = 5

**20.** 0 < a < 1 일 때, 다음 중 가장 큰 것은?

① a ②  $a^3$  ③  $\sqrt{a}$  ④  $\frac{1}{a^3}$  ⑤  $\frac{1}{\sqrt{a}}$ 



**21.**  $\sqrt{24x}$  가 8 과 9 사이의 수가 되도록 정수 x 의 값을 정하면?

 $8 < \sqrt{24x} < 9$  64 < 24x < 81  $2\frac{2}{3} < x < 3\frac{3}{8}$   $\therefore x = 3$ 

① 3 7 ④ 9 ⑤ 11

 ${f 22}$ . 다음 보기의 수 중에서 수직선 위의 점 A, B, C, D 에 대응하는 수들의 합을 구하여라.

보기

 $\sqrt{2}$ ,  $1 - \sqrt{2}$ ,  $2 - \sqrt{2}$ ,  $\sqrt{3} + 2$ ,  $\sqrt{3} + 4$ ,  $4 - \sqrt{3}$ 

▷ 정답: 8

▶ 답:

 $1 < \sqrt{2} < 2$ : B

-1 < 1 - √2 < 0 : 대응점 없음 0 < 2 - √2 < 1 : A

 $0 < 2 - \sqrt{2} < 1$  . A  $3 < \sqrt{3} + 2 < 4$  : D  $5 < \sqrt{3} + 4 < 6$  : 대응점 없음  $2 < 4 - \sqrt{3} < 3$  : C  $\therefore (2 - \sqrt{2}) + (\sqrt{2}) + (4 - \sqrt{3}) + (\sqrt{3} + 2) = 8$ 

**23.**  $x^2 - x + 3 = 4$ 이고  $x = \sqrt{a + \sqrt{a + \sqrt{a + \cdots}}}$ 일 때, a의 값을 구하 여라.

 ► 답:

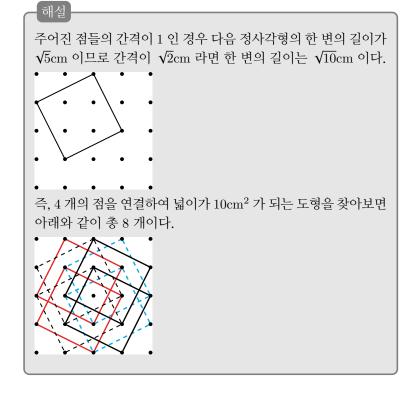
 ▷ 정답: a = 1

해설

 $x = \sqrt{a + \sqrt{a + \sqrt{a + \cdots}}}$ 에서  $\sqrt{a + \sqrt{a + \sqrt{a + \cdots}}} = \sqrt{a + x} = x$ 이므로  $a + x = x^2$ ,  $x^2 - x = a$   $x^2 - x + 3 = 4$ 이므로 a + 3 = 4 $\therefore a = 1$  **24.**  $\sqrt{\frac{96x}{y}} = N$  이 자연수가 되는 자연수 x, y 에 대해 다음 중 옳지 <u>않은</u> 것을 <u>모두</u> 고르면?

- ① xy 의 최솟값은 6 이다. ② 2x + y 의 최솟값은 7 이다.
- 3y=3 이면 N 은 자연수가 될 수 없다.
- ④ x 가 반드시 2 의 배수일 필요는 없다.
- ③ xy 는 반드시 6 의 배수여야 한다.

 $N=\sqrt{rac{96x}{y}}$  가 자연수가 되기 위해서는  $rac{96x}{y}$  가 완전제곱수여야  $96=2^5 imes 3$  이므로 xy 는 반드시 6~(제곱수)이어야 한다.(① 성립)


x = 1 일 때, y = 6 이면  $N = \sqrt{16} = 4$  이다.(④ 성립) y=3 일 때, x=2 이면 N=8 이다.(③은 성립하지 않는다.) 2x + y 는 x = 2, y = 3 일 때 최솟값 7 을 갖는다.(② 성립)

x=3이고 y=25인 경우 N은 자연수가 되지만 xy는 6의 배수 가 아니다.(⑤는 성립하지 않는다.)

**25.** 다음 그림과 같이 가로, 세로 각각 √2cm 간격으로 25 개의 점이 정 사각형 모양으로 나열되어 있다. 이들 점 중에서 4 개의 점을 꼭짓점 으로 하는 정사각형을 그릴 때, 넓이가  $10\mathrm{cm}^2$  인 정사각형의 개수를 구하여라.

<u>개</u> ▷ 정답: 8<u>개</u>

답:

