1. 다음 값을 바르게 구한 것끼리 짝지은 것은?

 \bigcirc $-\sqrt{0.09} = -0.3$

©
$$\sqrt{(-13)^2} = \pm 13$$
 © $-\sqrt{(-5)^2} = -5$

$$\sqrt{16} = \sqrt{4^2} = 4$$

 $\sqrt{0.09} = -\sqrt{0.3^2} = -0.3$

©
$$\sqrt{(-13)^2} = -(-13) = 13$$

© $-\sqrt{(-5)^2} = -\{-(-5)\} = -5$

2.
$$2 < x < 5$$
 일 때, $\sqrt{(x-2)^2} + \sqrt{(x-5)^2}$ 을 간단히 하여라.

$$x-2 > 0$$
 이고, $x-5 < 0$ 이므로
(준식)= $x-2-(x-5)=3$

- 다음 수 중에서 가장 작은 수는?
 - ① $2\sqrt{3}$ ② 3

- $\frac{\sqrt{7}}{2}$ 4 $\sqrt{11}$ 5 $\sqrt{\frac{7}{3}}$

- ① $2\sqrt{3} = \sqrt{12}$
- ② $3 = \sqrt{9}$
- $3 \frac{\sqrt{7}}{2} = \sqrt{\frac{7}{4}}$
- $\therefore \frac{\sqrt{7}}{2} < \sqrt{\frac{7}{3}} < 3 < \sqrt{11} < 2\sqrt{3}$

(1) $\sqrt{4} + 1$

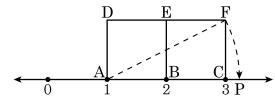
- ② $\sqrt{0.49}$
- $\sqrt{(-3)^2}$ $\sqrt{3} - 1$

① $\sqrt{4} + 1 = 2 + 1 = 3(\text{유리수})$

다음 중 유리수가 아닌 수는?

- ② $\sqrt{0.49} = 0.7(유리수)$
- ③ $\sqrt{(-3)^2} = 3(유리수)$ $() -\frac{1}{2} (유리수)$

5. 다음 그림에서 □ABED, □BCFE 는 정사각형이고, 점 P 는 A 를 중심으로 하고 ĀF 를 반지름으로 하는 원이 수직선과 만나는 교점이라할 때, 점 P 의 좌표를 바르게 나타낸 것은?



①
$$1 + \sqrt{3}$$
 ② $\sqrt{3} - 1$ ② $1 + \sqrt{5}$ ④ $\sqrt{5} - 1$

해설
$$\sqrt{16.9} \times \sqrt{640} = \sqrt{\frac{169}{10}} \times \sqrt{64 \times 10} = 13 \times 8 = 104$$

$$\times 10 = 13 \times 8 =$$

7.
$$\sqrt{70} = x\sqrt{0.7}, \sqrt{2000} = y\sqrt{0.2}$$
 일 때, $\frac{y}{x}$ 의 값을 구하여라. (단, $x, y > 0$)

$$\triangleright$$
 정답: $\frac{y}{r} = 10$

답:

해설
$$\sqrt{70} = \sqrt{\frac{70}{1}}$$

$$V = 10$$
 $V = 10\sqrt{0.7} = x\sqrt{0.7}$ 이므로

$$\therefore x = 10$$

$$100\sqrt{0.2} = y\sqrt{0.2}$$
 이므로

$$\therefore y = 100$$
$$\therefore \frac{y}{x} = 10$$

 $\sqrt{70} = \sqrt{\frac{700}{10}} = \sqrt{100 \times \frac{7}{10}} = 10\sqrt{0.7}$

 $\sqrt{2000} = \sqrt{10000 \times \frac{2}{10}} = 100\sqrt{0.2}$

3. 제곱근표에서 √3 = 1.732 √30 = 5.477 일 때, √0.03 와 √0.003 의 값으로 바르게 짝지어진 것은?

0.05477, 0.1732

4 0.5477, 0.01732

 $\sqrt{0.003} = \sqrt{30 \times 0.0001} = \frac{\sqrt{30}}{100} = 0.05477$

① 0.001732, 0.5477

0.1732 , 0.05477

해설
$$\sqrt{0.03} = \sqrt{3 \times 0.01} = \frac{\sqrt{3}}{10} = 0.1732$$

다음 보기에서 근호를 꼭 사용하여야만 나타낼 수 있는 것의 개수를

$$0, \sqrt{2}, \sqrt{1}, -\sqrt{0.02}, \sqrt{0.003}, \sqrt{\frac{121}{100}}$$

개

답:

9.

해설
$$0, \sqrt{1} = 1, \sqrt{\frac{121}{100}} = \frac{11}{10}$$
은 근호를 사용하지 않아도 간단한 유리수로 나타낼 수 있다.

10.
$$12 < \sqrt{3x+40} < 15$$
일 때, $\sqrt{3x+40}$ 을 정수가 되게 하는 자연수 x 의 값을 구하여라.

$$\triangleright$$
 정답: $x = 52$

$$12 < \sqrt{3x + 40} < 15$$

$$3x + 40 = 13^2 = 160$$

 $3x + 40 = 13^2 = 169, x = 43$ $3x + 40 = 14^2 = 196, x = 52$ 다음 보기 중 두 수의 대소 관계가 옳은 것을 모두 골라라.

 \bigcirc $\sqrt{20} - 4 > 1$

 \bigcirc $\sqrt{15} - \sqrt{17} > -\sqrt{17} + 4$

 $\bigcirc 2 - \sqrt{3} < \sqrt{5} - \sqrt{3}$

 \bigcirc $-\sqrt{7}-\sqrt{2}>-\sqrt{7}-1$

답:

답:

▷ 정답: ①

▷ 정답: ②

 $\sqrt{20} - 4 - 1 = \sqrt{20} - 5 = \sqrt{20} - \sqrt{25} < 0$

 $1.0 \sqrt{20} - 4 < 1$

 \bigcirc $\sqrt{15} - \sqrt{17} - (-\sqrt{17} + 4) = \sqrt{15} - 4$ $=\sqrt{15}-\sqrt{16}<0$

 $1.0 \cdot \sqrt{15} - \sqrt{17} < -\sqrt{17} + 4$

 \bigcirc $-\sqrt{7}-\sqrt{2}-(-\sqrt{7}-1)=-\sqrt{2}+1$ $=-\sqrt{2}+1<0$

 $\therefore -\sqrt{7} - \sqrt{2} < -\sqrt{7} - 1$

 $=\frac{2-\sqrt{2}}{4}>0$

 $\therefore \frac{1}{2} - \sqrt{5} > -\sqrt{5} + \frac{\sqrt{2}}{4}$

12. 다음 세 수 a, b, c 의 대소 비교를 하여라.

$$a = 2\sqrt{3} - 1, b = 3\sqrt{2} - 1, c = 9 - 3\sqrt{3}$$

$$a = 2\sqrt{3} - 1 = \sqrt{12} - 1$$

$$b = 3\sqrt{2} - 1 = \sqrt{18} - 1$$

$$c = 9 - 3\sqrt{3} = 9 - \sqrt{27}$$

$$c - b = 9 - 3\sqrt{3} - 3\sqrt{2} + 1$$

= $10 - 3(\sqrt{3} + \sqrt{2}) > 0$ $\therefore c > b$

$$\therefore c > b > a$$

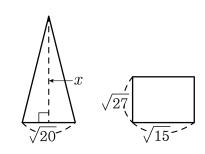
13.
$$\sqrt{0.002} = A\sqrt{5}$$
 일 때, A 를 구하여라.

$$ightharpoonup$$
 정답: $A=rac{1}{50}$

$$\sqrt{0.002} = \sqrt{\frac{20}{10000}} = \frac{\sqrt{20}}{100} = \frac{2\sqrt{5}}{100} = \frac{\sqrt{5}}{50}$$

$$A = \frac{1}{100}$$

14. 다음 그림의 삼각형과 직사각형의 넓이가 서로 같을 때, 삼각형의 높이 x 의 값을 구하여라.



$$\triangleright$$
 정답: $x=9$

$$\frac{1}{2} \times x \times \sqrt{20} = \sqrt{27} \times \sqrt{15}$$
$$\frac{1}{2} \times 2\sqrt{5} \times x = 3\sqrt{3} \times \sqrt{3 \times 5}$$

$$\sqrt{5} \times x = 9\sqrt{5}$$

 $\therefore x = 9$

15.
$$a = \sqrt{2}, b = \sqrt{3}$$
 일 때, $\sqrt{216} + \frac{\sqrt{24}}{\sqrt{2}}$ 를 a, b 로 나타내면?

①
$$6a + 2b$$

(4) 2ab + 6b

②
$$6a + 2ab$$

(5)
$$2a + 6ab$$

③ 6ab + 2b

$$\sqrt{216} = \sqrt{2^3 \times 3^3} = 2\sqrt{2} \times 3\sqrt{3} = 2a \times 3b = 6ab$$

$$\frac{\sqrt{24}}{\sqrt{2}} = \frac{\sqrt{24} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{48}}{2} = \frac{4\sqrt{3}}{2} = 2\sqrt{3} = 2b$$

$$\therefore \sqrt{216} + \left(\frac{\sqrt{24}}{\sqrt{2}}\right) = 6ab + 2b$$

16.
$$\frac{7}{3-\sqrt{2}}$$
의 정수부분을 a , 소수부분을 b 라 할 때, $\frac{1}{b}+\sqrt{a}$ 의 값은?

① $4+\sqrt{2}$ ② $3+\sqrt{2}$ ③ $2+\sqrt{2}$

$$4 \ 3 - \sqrt{2}$$
 $5 \ 2 - \sqrt{2}$

$$\frac{7}{3-\sqrt{2}} = \frac{7(3+\sqrt{2})}{7} = 3+\sqrt{2}$$

$$1 < \sqrt{2} < 2$$
이고 $4 < 3 + \sqrt{2} < 5$ 이므로

$$3 + \sqrt{2}$$
의 정수부분 $a = 4$, 소수부분 $b = (3 + \sqrt{2}) - 4 = \sqrt{2} - 1$

$$\therefore \frac{1}{b} + \sqrt{a} = \frac{1}{\sqrt{2} - 1} + \sqrt{4} = \sqrt{2} + 1 + 2 = \sqrt{2} + 3$$

17.
$$5-\sqrt{2}$$
 의 정수 부분을 a , 소수 부분을 b 라고 할 때, $a-b$ 의 값을 구하여라.

$$1 < \sqrt{2} < 2 \Rightarrow -2 < -\sqrt{2} < -1$$

 $\Rightarrow -2 + 5 < 5 - \sqrt{2} < -1 + 5$

$$a=3$$

- $=3-2+\sqrt{2}$ $= 1 + \sqrt{2}$
- $a = 3, b = 5 \sqrt{2} 3 = 2 \sqrt{2}$ $\therefore a - b = 3 - (2 - \sqrt{2})$

 \Rightarrow 3 < 5 - $\sqrt{2}$ < 4

18. 다음 보기에서 옳은 것의 개수는?

- $\bigcirc \frac{\pi}{4}$ 는 유리수가 아니다.
- ① 모든 무한소수는 무리수이다.
- © $1 \sqrt{7}$, $\sqrt{121}$, $-\sqrt{15^2}$, π 는 모두 무리수이다.
- ② 무리수이면서 유리수인 수는 없다.
- @ 음이 아닌 수의 제곱근은 반드시 2개가 있고. 그 절댓값은 같다.

- (2) 3
- ③ 4
- (4) 5 (5) 6

해설

- © 순환소수는 유리수이다.
- © $\sqrt{121}$, $-\sqrt{15^2}$ 는 유리수이다.
- ① 0의 제곱근은 0의 1개 뿐이다.

19. $\sqrt{960-32a}$ 가 정수가 되도록 하는 자연수 a 중에서 가장 큰 값을 M, 가장 작은 값을 m 이라고 할 때, M-2m 의 값은?

$$\sqrt{960 - 32a} = \sqrt{16(60 - 2a)} = 4\sqrt{60 - 2a}$$

$$60 - 2a = 0$$
 일 때, $a = 3$ 의 대, a

20.
$$f(x) = \sqrt{x+2} - \sqrt{x+1}$$
 일 때, $f(0)+f(1)+f(2)+\cdots+f(99)+f(100)$ 의 값을 구하면?

①
$$-1$$
 ② $\sqrt{101} - 1$ ③ $\sqrt{102} - 1$

$$4 \sqrt{102} - \sqrt{101}$$
 $5 \sqrt{102}$

 $=-1+\sqrt{102}$

$$f(0) = \sqrt{2} - \sqrt{1} = -1 + \sqrt{2}$$

$$f(1) = \sqrt{3} - \sqrt{2} = -\sqrt{2} + \sqrt{3}$$

$$f(2) = \sqrt{4} - \sqrt{3} = -\sqrt{3} + \sqrt{4} \cdots$$

$$f(99) = \sqrt{101} - \sqrt{100} = -\sqrt{100} + \sqrt{101}$$

$$f(100) = \sqrt{102} - \sqrt{101} = -\sqrt{101} + \sqrt{102}$$

$$\therefore f(0) + f(1) + f(2) + \cdots + f(99) + f(100)$$

$$= -1 + \sqrt{2} - \sqrt{2} + \sqrt{3} + -\sqrt{3} + \sqrt{4} + \cdots - \sqrt{100} + \sqrt{101} - \sqrt{101} + \sqrt{102}$$

$$= -1 + (\sqrt{2} - \sqrt{2}) + (\sqrt{3} - \sqrt{3}) + (\sqrt{4} + \cdots - \sqrt{100}) + (\sqrt{101} - \sqrt{101}) + \sqrt{102}$$

$$= -1 + (0) + (0) + (0) + \sqrt{102}$$

21. 자연수 x 에 대하여 \sqrt{x} 보다 작거나 같은 자연수의 개수를 N(x) 로 나타내면 $N(1) + N(2) + N(3) + \cdots + N(x) = 42$ 가 성립되는 x 의 값을 구하여라.

$$N(1) + \cdots + N(3) = 1 \times 3 = 3$$

 $N(4) + \cdots + N(8) = 2 \times 5 = 10$
 $N(9) + \cdots + N(15) = 3 \times 7 = 21$
 $N(16) + N(17) = 4 \times 2 = 8$
 $x = 17$ 일 때, 성립

22. 다음 제곱근표를 이용하여 $\sqrt{55}$ 의 값을 구하면?

수	0	1	2	3	4	5
2.0	1.41	1.41	1.42	1.42	1.42	1.43
2.1	1.44	1.45	1.45	1.45	1.46	1.46
2.2	1.48	1.48	1.49	1.49	1.49	1.50
2.3	1.51	1.52	1.52	1.52	1.53	1.53
2.4	1.54	1.55	1.55	1.55	1.56	1.56

$$\sqrt{55} = \sqrt{2.2 \times 25} = 5\sqrt{2.2} = 5 \times 1.48 = 7.40$$

23. 두 원 A, B 의 반지름의 길이를 각각 r_1 , r_2 라고 할 때, $r_1 = 4r_2$ 이고, 원 A 의 넓이는 $256\pi\,\mathrm{cm}^2$ 이다. 원 B 의 반지름의 길이를 구하여라.

cm

답:

$$r_1 = \sqrt{256} = 16 \,\mathrm{cm}$$
 : $r_2 = 4 \,\mathrm{(cm)}$

24. 세 개의 주사위를 던져서 나온 눈의 수를 각각 a,b,c 라 할 때, $\sqrt{60abc}$ 가 자연수가 될 경우는 몇 가지인지 구하여라. (단, b>c)

지원
$$\sqrt{60abc} = \sqrt{2^2 \times 3 \times 5 \times abc}$$

 $abc = 15 또는 abc = 60$
 $(a, b, c) = 15 일 때,$
 $(a, b, c) = (3, 5, 1), (5, 3, 1), (1, 5, 3)$
 $abc = 60 일 때,$
 $(a, b, c) = (3, 5, 4), (4, 5, 3), (5, 4, 3),$
 $(2, 6, 5), (5, 6, 2), (6, 5, 2)$

25. 자연수 n 에 대하여 \sqrt{n} 이하의 자연수의 개수를 f(n) 이라 할 때, $f(1) + f(2) + f(3) + \cdots + f(n) = 161$ 을 만족하는 n의 값을 구하여 라.

 $\sqrt{1} = 1$, $\sqrt{4} = 2$, $\sqrt{9} = 3$, $\sqrt{16} = 4$, $\sqrt{25} = 5$, $\sqrt{36} = 6$, $\sqrt{49} = 6$

해설

 $\therefore n = 41$

7 이므로
$$n = 1, 2, 3$$
일 때, $f(n) = 1 \rightarrow 3 \times 1 = 3$
 $n = 4, \dots, 8$ 일 때, $f(n) = 2 \rightarrow 5 \times 2 = 10$
 $n = 9, \dots, 15$ 일 때, $f(n) = 3 \rightarrow 7 \times 3 = 21$
 $n = 16, \dots, 24$ 일 때, $f(n) = 4 \rightarrow 9 \times 4 = 36$
 $n = 25, \dots, 35$ 일 때, $f(n) = 5 \rightarrow 11 \times 5 = 55$
 $n = 36, \dots, 48$ 일 때, $f(n) = 6 \rightarrow 13 \times 6 = 78$
 $3 + 10 + 21 + 36 + 55 = 125$ 이고,

n = 41이면 $125 + 6 \times 6 = 161$