
1. 다음 중 근호를 꼭 사용하여야만 나타낼 수 있는 제곱근은?

 $\sqrt{25}$

①
$$-\sqrt{4}$$
 ② $\pm\sqrt{11}$

$$4 \pm \sqrt{100}$$
 $5 0$

 $\bigcirc 0$

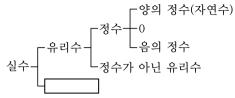
2.
$$-2 < x < 5$$
 인 실수 x 에 대하여 $\sqrt{(x+2)^2} + \sqrt{(x-5)^2}$ 을 간단히 하여라.

답:

3.
$$\sqrt{\frac{48}{7}}x$$
 가 자연수가 되도록 하는 가장 작은 정수 x 를 구하여라.

$$\frac{48}{7}x = \frac{2^4 \times 3 \times x}{7}$$
 이므로 $x = 3 \times 7 = 21$ 이다.

- 4. $\sqrt{150-x}$ 의 값이 가장 큰 자연수가 되도록 하는 자연수 x 의 값은?
 - ① 1 ② 2 ③ 4 ④ 5 ⑤ 6


```
해설

150 - x 가 150보다 작은 제곱수 중에서 가장 커야 하므로 150 -

x = 144

∴ x = 6
```

5. 다음 중 _____ 안의 수에 해당하지 <u>않는</u> 것은?

①
$$\sqrt{5} + 1$$

$$\bigcirc$$
 $-\frac{1}{2}$ \bigcirc \bigcirc $0.1234\cdots$

③
$$\sqrt{0.9}$$

$$4 - \sqrt{2.89} = -\sqrt{\frac{289}{100}} = -\sqrt{\left(\frac{17}{10}\right)^2} = -\frac{17}{10}$$

6.
$$a^2 = 15$$
 일 때, a 의 값으로 옳은 것은?

①
$$-\sqrt{15}$$

$$4 \pm \sqrt{15}$$

⑤ $3\sqrt{5}$

(3) $\pm 3\sqrt{5}$

a 는 15 의 제곱근이므로 $\pm \sqrt{15}$ 이다.

①
$$\sqrt{\frac{1}{64}} = \frac{1}{8}$$

③ $\sqrt{(0.4)} = \frac{2}{3}$

$$\sqrt{0.01} = 0.0001$$

 $\sqrt{0.01} = 0.1$

8. $\sqrt{11+x}$ 가 자연수가 되도록 하는 자연수 x 의 값 중 가장 큰 두 자리 자연수는?

① 5 ② 70 ③ 81 ④ 89 ⑤ 99

$$11 + x$$
 가 제곱수가 되어야 한다.
 $\sqrt{11 + x}$ 가 자연수가 되게 하는 가장 큰 두 자리 x 값은
 $\sqrt{11 + x} = \sqrt{81}$ $\therefore x = 70$
 $\sqrt{11 + x} = \sqrt{100}$ $\therefore x = 89$
 $\sqrt{11 + x} = \sqrt{121}$ $\therefore x = 110$

110은 세자리 수 이므로 x = 89 이다.

9. 다음 수를 큰 수부터 순서대로 나열할 때, 세 번째에 오는 수를 구하여라.

$$\sqrt{5}$$
, $-\sqrt{3}$, 3, 1, $-\sqrt{5}$

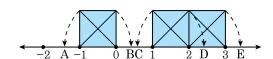
- ▶ 답:
- ▷ 정답: 1

10.
$$\sqrt{(\sqrt{3}-1)^2} + \sqrt{(\sqrt{3}-2)^2}$$
 을 계산하여라.

해설
$$\sqrt{3}-1>0$$
 이므로 $\sqrt{(\sqrt{3}-1)^2}=\sqrt{3}-1$ $\sqrt{3}-2<0$ 이므로

$$\sqrt{3} - 2 < 0$$
 ○] 프로
$$\sqrt{(\sqrt{3} - 2)^2} = -(\sqrt{3} - 2) = -\sqrt{3} + 2$$

$$\therefore \sqrt{(\sqrt{3} - 1)^2} + \sqrt{(\sqrt{3} - 2)^2}$$


$$= \sqrt{3} - 1 - \sqrt{3} + 2 = 1$$

11. \sqrt{x} 이하의 자연수의 개수를 N(x) 라고 하면 $2<\sqrt{5}<3$ 이므로 N(5)=2 이다. 이 때, $N(1)+N(2)+\cdots+N(9)+N(10)$ 의 값을 구하여라.

지 (4)
$$\sqrt{4} = 2$$
, $\sqrt{9} = 3$ 이므로 $N(1), N(2), N(3) = 1$ $N(4), N(5), \dots, N(8) = 2$

N(9), N(10) = 3 $\therefore N(1) + N(2) + \dots + N(9) + N(10)$ $= 1 \times 3 + 2 \times 5 + 3 \times 2 = 19$

다음 수직선 위의 네 점 중에서 $2-\sqrt{2}$ 를 나타내는 대응점으로 알맞은 12. 것을 고르면?

(1) A ② B

(5) E

해설

각 사각형의 대각선의 길이는 $\sqrt{2}$ 이다. 즉 C 의 위치는 $2 - \sqrt{2}$ 를 나타내고 있다.

13. 다음 중 옳은 것을 모두 고른 것은?

 \bigcirc 4 - $\sqrt{9}$ < -1

 \bigcirc $4\sqrt{5}+1>4\sqrt{5}+\sqrt{2}$

 \bigcirc $-\sqrt{5} > -4$

 $\bigcirc \sqrt{28} + 1 > 3 + 2\sqrt{7}$

 \bigcirc 2 $\sqrt{3}$ - 2 < 3 $\sqrt{2}$ - 2

(4) (E), (E)

(5) (2), (1)

해설

$$\bigcirc 4 - \sqrt{9} - (-1) = 5 - \sqrt{9} > 0$$

$$\therefore 4 - \sqrt{9} > -1$$

$$\bigcirc 4\sqrt{5} + 1 - (4\sqrt{5} + \sqrt{2})$$

$$= 4\sqrt{5} + 1 - 4\sqrt{5} - \sqrt{2}$$

$$= 1 - \sqrt{2} < 0$$

 $\therefore 4\sqrt{5} + 1 < 4\sqrt{5} + \sqrt{2}$

$$\Box - \sqrt{5} > -\sqrt{16}$$

$$\therefore -\sqrt{5} > -4$$

$$\bigcirc \sqrt{28} + 1 - (3 + 2\sqrt{7})$$

$$=\sqrt{28}+1-3-\sqrt{28}$$

$$= -2 < 0$$

$$\therefore \sqrt{28} + 1 < 3 + 2\sqrt{7}$$

$$\bigcirc 2\sqrt{3} - 2 - (3\sqrt{2} - 2)$$

$$= 2\sqrt{3} - 3\sqrt{2} = \sqrt{12} - \sqrt{18} < 0$$

$$\therefore 2\sqrt{3} - 2 < 3\sqrt{2} - 2$$

$$\therefore 2 - \sqrt{2} < \sqrt{2}$$

14. 다음 중 보기의 주어진 식의 대소 관계가 알맞은 것은?

$$A = \sqrt{6} - 3, B = \sqrt{6} - \sqrt{5}, C = 3 - \sqrt{5}$$

① A > B

② A > C

3 B > C > A

15. 다음 수직선 위의 점 중에서 $-\sqrt{17} + 6$ 에 대응하는 점은?

① A ② B

С

4))D

) E

 $-5 < -\sqrt{17} < -4$ 이므로 $1 < -\sqrt{17} + 6 < 2$ 이다. $-\sqrt{17} + 6$ 에 대응하는 점은 점 D 이다.

16. 196의 제곱근을 각각 x, y라 할 때, $\sqrt{3x-2y+11}$ 의 제곱근을 구하여라. (단, x>y)

√3x - 2y + 11 = √81 = 9 따라서 9의 제곱근은 ±3이다. **17.** 다음 두 수 6 과 15 사이에 있는 정수 n 에 대하여 \sqrt{n} 이 무리수인 n의 개수는?

① 11 개 ② 10 개 ③ 9 개 ④ 8 개

 $7 \sim 14$ 까지의 정수 중 $3^2 = 9$ 제외. 7, 8, 10, 11, 12, 13, 14 (7 개)