- **1.** 16 의 제곱근 중 작은 수와 121 의 제곱근 중 큰 수의 합을 구하면?
 - ① -7 ② 4

- ③ 7 ④ 15 ⑤ 20

해설 16 의 제곱근은 ±4 이고 121 의 제곱근은 ±11 이다. 16 의 제곱근

중 작은 수는 -4 이고 121 의 제곱근 중 큰 수는 11 이다. 11 - 4 는 7 이다.

2. 다음 중 근호를 사용하지 않고 나타낼 수 $\frac{1}{1}$ 었을 모두 골라라.

 $\bigcirc \sqrt{0.16}$ $\bigcirc \sqrt{0.4}$ $\bigcirc \sqrt{101}$ $\bigcirc \sqrt{9}$ $\bigcirc -\sqrt{\frac{4}{9}}$

▶ 답:

▶ 답:

 ▷ 정답:
 □

▷ 정답: ⑤

\bigcirc $\sqrt{0.16}$ 은 0.16의 양의 제곱근이므로 0.4이다.

- ① $\sqrt{0.4}$ 는 0.4 의 양의 제곱근이다. 근호를 사용하지 않고 나타 낼 수 없다.
- © √101 은 101 의 양의 제곱근이다. 근호를 사용하지 않고
- 나타낼 수 없다. ② √9 는 9의 양의 제곱근이므로 3이다.
- $\square \sqrt{\frac{4}{9}}$ 는 $\frac{4}{9}$ 의 음의 제곱근이므로 $-\frac{2}{3}$ 이다.

3. x > 1 일 때, $\sqrt{(x-1)^2} - \sqrt{(1-x)^2}$ 의 값을 구하여라.

▶ 답:

▷ 정답: 0

해설

x > 1 이므로 x - 1 > 0 , 1 - x < 0 (준식) $= (x - 1) - \{-(1 - x)\}$

$$= (x-1) - (x-1) = 0$$

① 1 ② 4 ③ 7 ④ 10 ⑤ 15

4. $\sqrt{40-x}$ 의 값이 자연수가 되도록 하는 가장 작은 자연수 x는?

 $\sqrt{36}$ 이므로 x = 4이다.

- 5. 다음 중 근호를 사용하지 않고 나타낸 수로 올바른 것은?

- $-\sqrt{25} = 5$ ② $-\sqrt{(-6)^2} = 6$ ③ $(\sqrt{7})^2 = 7$ ④ $-\left(\sqrt{\frac{4}{3}}\right)^2 = \frac{4}{3}$

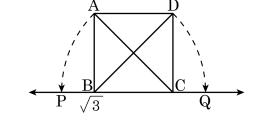
- $-\sqrt{25} = -5$ ② $-\sqrt{(-6)^2} = -6$

6. a < 0 일 때, $\sqrt{(2a)^2} - \sqrt{(-a)^2}$ 을 간단히 하면?

① 3a ② -3a ③ a ④ -a ⑤ 5a

2a < 0, -a > 0 이므로 $\sqrt{(2a)^2} - \sqrt{(-a)^2}$ = -2a - (-a) = -2a + a = -a ① 2 ② 4 ③ 6 ④ 8 ⑤ 10

7. $\sqrt{10+x}$ 의 값이 가장 작은 자연수가 되도록 하는 자연수 x 의 값은?

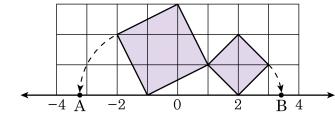

해설 $\sqrt{10+x} = 4$ $\therefore x = 6$

8. 부등식 $\sqrt{3} < x < \sqrt{23}$ 을 만족하는 자연수 x 의 합은?

_ 해설

① 5 ② 7 ③ 9 ④ 10 ⑤ 15

 $\sqrt{3}$ < x < $\sqrt{23}$, 3 < x² < 23 x = 2, 3, 4 ∴ 2 + 3 + 4 = 9 9. 다음 그림에서 사각형 ABCD 는 한 변의 길이가 1 인 정사각형이고, $B(\sqrt{3})$ 이다. 이 때, 점 P의 좌표를 구하면?


- ① $2\sqrt{3}$
- ② $-1 + 2\sqrt{2}$ ③ $-1 + 2\sqrt{3}$ $4 2\sqrt{3} - \sqrt{2}$ $5 1 + \sqrt{3} - \sqrt{2}$

해설

정사각형 한 변의 길이가 1 이므로 점 C 의 좌표는 $C(\sqrt{3}+1)$

이다. 정사각형 한 변의 길이가 1 이므로 대각선 길이는 $\sqrt{2}$ 이다. 따라서 점 P 의 좌표는 $P(\sqrt{3}+1-\sqrt{2})$ 이다.

10. 다음 수직선에서 두 점 A, B 에 대응하는 점을 각각 바르게 나타낸

- ① A $\left(-1-\sqrt{5}\right)$, B $\left(2-\sqrt{2}\right)$ ② A $\left(-1 + \sqrt{5}\right)$, B $\left(2 + \sqrt{2}\right)$
- \bigcirc A $\left(-1-\sqrt{5}\right)$, B $\left(2+\sqrt{2}\right)$

- \bigcirc A $\left(-1-\sqrt{7}\right)$, B $\left(2+\sqrt{2}\right)$

해설

(큰 정사각형의 넓이)= $3 \times 3 - 4 \times \left(\frac{1}{2} \times 2 \times 1\right) = 5$ (한 변의 길이)= √5 ∴ A(-1 - √5)

$$\therefore A(-1 - \sqrt{5})$$

(작은 정사각형의 넓이)=
$$2 \times 2 - 4 \times \left(\frac{1}{2} \times 1 \times 1\right) = 2$$
한 변의 길이= $\sqrt{2}$

$$\therefore B(2+\sqrt{2})$$

11. 다음 중 옳은 것을 <u>모두</u> 고른 것은?

(a) $\sqrt{5} - 1 > 1$ (b) $\sqrt{11} - 2 < -2 + \sqrt{10}$

© $2 - \sqrt{3} < \sqrt{5} - \sqrt{3}$ @ $\sqrt{7} + 3 < \sqrt{7} + \sqrt{8}$

① $\sqrt{11} - 2 - \left(-2 + \sqrt{10}\right) = \sqrt{11} - \sqrt{10} > 0$ ∴ $\sqrt{11} - 2 > -2 + \sqrt{10}$

 $(3) \sqrt{7} + 3 - (\sqrt{7} + \sqrt{8}) = 3 - \sqrt{8} > 0$

 $\therefore \sqrt{7} + 3 > \sqrt{7} + \sqrt{8}$

해설

12. 다음 보기에서 제곱근을 구한 것 중 바르지 <u>않은</u> 것을 모두 고르면?

① 49 의 음의 제곱근 → -7

- © 1 의 제곱근 → 1
- © √4 의 제곱근 → ±2
- ② (-5)² 의 제곱근 → ±5

해설

© 1 의 제곱근 \rightarrow ± 1 © $\sqrt{4}$ 의 제곱근 \rightarrow 2 의 제곱근 \rightarrow $\pm \sqrt{2}$

| ⊕ VI-I/IIII

13. 다음 주어진 식이 자연수 n이 되도록 하는 m의 최솟값을 차례대로 구하여라.

$n = \sqrt{65m}$ $n = \sqrt{75m}$ $n = \sqrt{\frac{80}{m}}$ $n = \sqrt{\frac{80}{m}}$		자연수 <i>m</i> 의 최솟값	n
$n = \sqrt{\frac{80}{-}}$	$n=\sqrt{65m}$	\bigcirc	
$n = \sqrt{\frac{80}{3}}$	$n=\sqrt{75m}$	(L)	
v m	$n = \sqrt{\frac{80}{m}}$	©	

답: ▶ 답:

답:

▷ 정답 : ① : 65 ▷ 정답 : □ : 3

▷ 정답 : □ : 5

 \bigcirc 65m = $5 \times 13 \times m$ 이므로 m = 5×13 = 65 이고 n = $\sqrt{65 \times 65} = 65$ 이다.

 \bigcirc 75 $m = 3 \times 5^2 \times m$ 이므로 m = 3 이코 $n = \sqrt{75 \times 3} = 15$ 이다.

(ⓒ) $\frac{80}{m} = \frac{2^4 \times 5}{m}$ 이므로 m = 5 이코 $n = \sqrt{\frac{80}{5}} = 4$ 이다.

- ① $\frac{2}{5}$ ② $\sqrt{\frac{2}{5}}$ ③ $\frac{2}{\sqrt{5}}$ ④ $\frac{\sqrt{2}}{5}$ ⑤ $\frac{\sqrt{2}}{2}$

제곱해서 크기를 비교하면

$$\left(\begin{array}{c} (1) \left(\frac{1}{5} \right) = \frac{1}{2} \\ \left(\begin{array}{c} \sqrt{2} \end{array} \right)^2 \end{array} \right)$$

$$\left(\frac{4}{5} \right) = \frac{25}{25}$$

15. 다음 보기에서 무리수는 몇 개인지 구하여라.

<u>개</u>

정답: 3<u>개</u>

답:

 $-\frac{1}{4}$, $0.\dot{2}=\frac{2}{9}$, $\sqrt{2^4}=2^2=4$ 는 유리수이다. π , $\sqrt{2}-1$, $\sqrt{5}$ 는 무리수이다. 따라서 무리수는 3 개이다.

16. 다음 보기 중 옳지 <u>않은</u> 것을 모두 찾아라.

·

- 유한소수는 유리수이다.
- © 무한소수는 무리수이다.
- © 무한소수는 순환소수로 나타낼 수 있다.
- ② 모든 양수는 2 개의 무리수 제곱근을 갖는다.③ 제곱근 4 는 ±2 이다.
- ◎ 실수 중에서 유리수가 아닌 수는 모두 무리수이다.
 - \circledcirc a 가 자연수일 때, \sqrt{a} 가 무리수인 경우가 있다.
- 답:
- 답:
- 답:답:
- 답:
- ▷ 정답:
 □

 ▷ 정답:
 □
- ▷ 정답:
 ②

 ▷ 정답:
 ③
- ▷ 정답: ②

© 무한소수는 순환소수와 비순환소수로 나타낼 수 있다. ② 모든 양수가 2 개의 '무리수'제곱근을 갖는 것은 아니다.

예) 양수 4 는 2 개의 유리수 제곱근(±2)을 갖는다.

€ 무한소수 중 순환소수는 유리수이다.

- $\otimes \sqrt{6}$ 은 무리수이지만 6 은 소수가 아니다.

17. 다음 보기에서 옳은 것의 개수는? 보기

- ⊙ 모든 무한소수는 무리수이다.
- \bigcirc 0 이 아닌 모든 유리수는 무한소수 또는 유한소수로 나타낼 수 있다. ⑤ -100 은 √10000 의 제곱근이다.
- ⓐ 음이 아닌 수의 제곱근은 반드시 2개가 있고, 그 절댓값은 같다.
- ◉ 모든 유리수는 유한소수이다.

①1개

② 2개 ③ 3개 ④ 4개 ⑤ 5개

⊙ 무한소수는 순환하는 무한소수(유리수)와 순환하지 않는

- 무한소수(무리수)로 나뉜다. © $\sqrt{10000} = 100$ 의 제곱근은 ± 10 이다. ② 0 의 제곱근은 0 뿐이므로 1 개다.
- ① $\sqrt{25} = 5$
- ⓐ 유리수 중 순환소수는 무한소수이다.

18. 다음 중 옳지 <u>않은</u> 것은?

- ① 두 정수 0과 1 사이에는 무수히 많은 유리수가 있다.
- ② 두 무리수 $\sqrt{9}$ 와 $\sqrt{16}$ 사이에는 무수히 많은 무리수가 있다.
- ③ 수직선은 실수에 대응하는 점들로 완전히 메워져 있다.
- ④ 모든 실수는 수직선 위에 나타낼 수 있다.
- ③ 서로 다른 무리수 사이에는 무수히 많은 정수들이 있다.

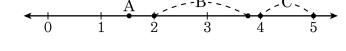
정수는 서로 다른 두 수 사이에 유한개 존재한다.

해설

19. $A = 3\sqrt{2} - 1$, $B = 2\sqrt{3} - 1$, C = 3 일 때, A, B, C 의 대소 관계를 나타내어라.

답:▷ 정답: B < C < A

해설


 $A = 3\sqrt{2} - 1 = \sqrt{18} - 1, \ B = 2\sqrt{3} - 1 = \sqrt{12} - 1, \ C = 3 = \sqrt{9}$ $A - C = \sqrt{18} - 1 - 3 = \sqrt{18} - 4 = \sqrt{18} - \sqrt{16} > 0$

A > C $C - B = 3 - (2\sqrt{3} - 1) = 4 - \sqrt{12} > 0$

 $C - B = 3 - (2\sqrt{3})$ $\therefore C > B$

 $\therefore A > C > B$

20. 보기의 내용은 다음의 수직선을 보고 설명한 것이다. 다음 중 <u>틀린</u> 것은 모두 몇 개인가?

보기 **③** √17 은 C 구간에 위치한다.

- □ -√2+3 은 점 A 에 대응한다.
- © B 구간에 존재하는 유리수는 유한개다.
- ② $\,\mathrm{C}\,$ 구간에 있는 무리수 \sqrt{n} 의 개수는 10 개이다. (단, n

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

্ৰা য

© B 구간에 존재하는 유리수는 무한개이다. ② C 구간에 있는 무리수 \sqrt{n} 의 개수는 $\sqrt{17} \sim \sqrt{24}$, 총 8 개이

다.