1. x 가 11 의 제곱근일 때, x 와 11 의 관계식을 바르게 나타낸 것은?

①
$$11 = \sqrt{x}$$
 ② $11^2 = x$ ③ $x^2 = 11$ ④ $11 = \pm \sqrt{x}$ ⑤ $x = \sqrt{11}$

$$x$$
 는 제곱해서 11 이 되는 수이므로 $x^2 = 11$ 이다. $x = \pm \sqrt{11}$

- 2. 다음 중 옳은 것은?
 - ① 0은 제곱근이 없다.
 - \bigcirc $\sqrt{36}$ 의 제곱근과 6의 제곱근은 같다.
 - ③ $\sqrt{16}$ 의 제곱근은 4 또는 -4이다.
 - ④ 1의 제곱근은 1개이다.
 - ⑤ -2는 -4의 음의 제곱근이다.

해설

- ① 0의 제곱근은 0이다.
- ③ $\sqrt{16}$ 의 제곱근은 -2, 2
- ④ 1의 제곱근은 -1, 1
- ⑤ 음수의 제곱근은 없다.

3. 다음 중 옳은 것은?

- ① $\sqrt{81} = \pm 9$
- ② 음수의 제곱근은 두 개이다.
- ③ 제곱근 0.49 는 ±0.7 이다.
- ④ 6.4 의 제곱근은 0.8 이다.
- ⑤ 0의 제곱근은 한 개이다.

해설

- ① $\sqrt{81} = 9$
- ② 음수의 제곱근은 없다.
- ③ 제곱근 $0.49 = \sqrt{0.49} = 0.7$
- ④ 6.4의 제곱근 $= \pm \sqrt{6.4}$

4. 다음 보기에서 옳지 않은 것을 모두 고른 것은?

보기

- (¬) 49 의 제곱근은 ±7 이다.
- (L) √144 의 제곱근은 ±12 이다.
- (C) 200 의 제곱근은 ±20 이다.
- (리) -4 의 제곱근은 없다.
- (ロ) $-\sqrt{25}$ 는 -5 와 같다.

① $(\neg),(L)$

② (∟),(□),(□)

③ (∟),(⊏)

④ (∟),(⊒),(□)

⑤ (∟),(⊏),(≥)

해설

(L) ($\sqrt{144}$ 의 제곱근)= (12 의 제곱근)= $\pm \sqrt{12}$ (C) (200 의 제곱근)= $\pm 10 \sqrt{2}$

(1) -12

⑤
$$-\sqrt{3.9}$$

$$3.\dot{9} = \frac{39-3}{9} = 4$$
 , 4 의 음의 제곱근은 -2

$$\triangleright$$
 정답: $x=9$

해설

직사각형의 넓이를 구해보면 $27 \times 3 = 81$ 이 된다. 직사각형과 넓이가 같은 정사각형을 만들려면 $x^2 = 81$ 을 만족하여야 한다. 즉, 81의 제곱근을 구하면 되는 것이다. 81의 제곱근은 ± 9 이다.

그러므로 정사각형 한 변 x의 길이는 9 가 된다.

7. 한 변의 길이가 각각 √7 cm , √10 cm 인 정사각형 두 개가 있다. 이 두 정사각형의 넓이를 합하여 하나의 큰 정사각형으로 만들 때, 큰 정사각형의 한 변의 길이를 구하여라.

cm

정답:	$\sqrt{17}$	cm

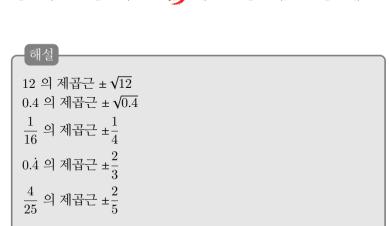
답:

해설
$$(\sqrt{7})^2 + (\sqrt{10})^2 = 17 \ \text{이다.}$$
 따라서 큰 정사각형의 한 변의 길이는 17 의 양의 제곱근인 $\sqrt{17}(\text{cm})$ 이다.

8. 다음 중 반드시 근호를 사용하여 나타내야만 하는 것은?
 ① √0.49
 ② √121
 ③ √1

①
$$\sqrt{0.49}$$
 ② $\sqrt{121}$ ④ $\sqrt{\frac{1}{16}}$ ⑤ $\sqrt{0.4}$

다음 보기에서 근호를 꼭 사용하여야만 나타낼 수 있는 것의 개수를


$$0, \sqrt{2}, \sqrt{1}, -\sqrt{0.02}, \sqrt{0.003}, \sqrt{\frac{121}{100}}$$

개

답:

9.

해설
$$0, \sqrt{1} = 1, \sqrt{\frac{121}{100}} = \frac{11}{10}$$
은 근호를 사용하지 않아도 간단한 유리수로 나타낼 수 있다.

11.
$$a > 0$$
 일 때, 다음 중 옳지 않은 것은?

①
$$\sqrt{a^2} = a$$
 ② $(-\sqrt{a})^2 = a$ ③ $-\sqrt{(-a)^2} = a$

(4)
$$(\sqrt{a})^2 = a$$
 (5) $-\sqrt{a^2} = -a$

$$a > 0$$
 일 때,
① $\sqrt{a^2} = a$
② $(-\sqrt{a})^2 = a$
③ $-\sqrt{(-a)^2} = -\sqrt{a^2} = -a$
④ $(\sqrt{a})^2 = a$

 $(5) - \sqrt{a^2} = -a$

- ⊙ 0 의 제곱근은 0 뿐이다.
- ⑥ 음수의 제곱근은 1개이다.
- © 제곱근은 항상 무리수이다.
- (a) $\sqrt{(-81)^2}$ 의 제곱근은 ± 9 이다.
- \bigcirc $-\sqrt{a}$ 는 -a 의 음의 제곱근이다.
- ▶ 답:
- ▶ 답:
- ▷ 정답 : ⑤
- ▷ 정답: ②
 - 해설
 - © 음수의 제곱근은 없다.
 - © 제곱근은 무리수일 수도 있고 유리수일 수도 있다.
 - $\bigcirc -\sqrt{a}$ 는 a 의 음의 제곱근이다.

13. 다음 중 바르지 않은 것을 고르면?

①
$$\sqrt{\frac{1}{64}} = \frac{1}{8}$$

③ $\sqrt{(0.4)} = \frac{2}{3}$

$$\boxed{5} - \sqrt{49} = -7$$

해설
$$\sqrt{0.01} = 0.1$$

14. a > 0 일 때, 다음 중 옳은 것은?

$$(\sqrt{9a})^2 = 9a$$

$$\sqrt{(-5a)^2} = -5a$$

$$(2) -(-\sqrt{3a})^2 = 3a$$

$$4 - \sqrt{4a^2} = -2a$$

$$\sqrt{(-5a)^2} = 5a$$

15.
$$a > 0$$
, $b > 0$ 일 때 옳은 것은?

①
$$\sqrt{a^2b} = ab$$
 ② $-\sqrt{ab^2} = b\sqrt{a}$ ③ $-a\sqrt{b} = \sqrt{a^2b}$
④ $\sqrt{\frac{b}{a^2}} = \frac{\sqrt{ab}}{a}$ ⑤ $\sqrt{\frac{b^2}{a}} = \frac{b}{\sqrt{a}}$

①
$$\sqrt{a^2b} = a\sqrt{b}$$

② $-\sqrt{ab^2} = -b\sqrt{a}$
③ $-a\sqrt{b} = -\sqrt{a^2b}$

$$4 \sqrt{\frac{b}{a^2}} = \frac{\sqrt{b}}{a}$$

- **16.** 다음 중 옳은 것은?
 - ① $\sqrt{10}$ 은 $\sqrt{2}$ 의 5 배이다.
 - ② 25 의 제곱근은 5 이다.
 - ③ $-\sqrt{(-3)^2}$ 은 -3 이다.
 - ④ √16 의 제곱근은 ±4 이다.
 - ⑤ -8 의 음의 제곱근은 √8 이다.

해설

- ① $\sqrt{10}$ 은 $\sqrt{2}$ 의 $\sqrt{5}$ 배이다.
- ② 25 의 제곱근은 ±5 이다.
- ④ $\sqrt{16}$ 의 제곱근은 ± 2 이다.
- ⑤ 음수의 제곱근은 없다.

①
$$\sqrt{100} - \sqrt{13^2}$$

② $-\frac{\sqrt{4 \times 3^2}}{2}$

$$3 - \sqrt{(-5)^2} \times \frac{3}{\sqrt{25}}$$

$$4 - \sqrt{5^2} + \sqrt{64}$$

$$3 - \sqrt{(-5)^2} \times \frac{3}{\sqrt{25}} = -3$$
$$4 - \sqrt{5^2} + \sqrt{64} = -5 + 8 = 3$$

18.
$$a = -\sqrt{5}, b = \sqrt{3}$$
 일 때, $2a^2 - (-b)^2$ 의 값을 구하여라.

$$2a^{2} - (-b)^{2} = 2(-\sqrt{5})^{2} - (-\sqrt{3})^{2}$$
$$= 2 \times 5 - 3 = 7$$

19.
$$4\sqrt{9} + 2\sqrt{16} - 4\sqrt{\frac{1}{4}} - \sqrt{(-7)^2}$$
 를 계산하여라.

(준식) =
$$4 \times 3 + 2 \times 4 - 4 \times \frac{1}{2} - 7$$

= $12 + 8 - 2 - 7 = 11$

20. $\frac{10^{12}}{20^6} = \sqrt{25^a}$, $\sqrt{\frac{3^{12}}{3^4}} = 3^b$ 일 때, a + b 의 값을 구하면?

$$\frac{10^{12}}{20^6} = \frac{10^{12}}{2^6 \times 10^6} = \frac{10^6}{2^6} = 5^6 = \sqrt{25^6}, \ a = 6$$

$$\sqrt{\frac{3^{12}}{3^4}} = \sqrt{3^8} = 3^4, \ b = 4$$

 $\therefore a + b = 10$

$$3^4, b = 4$$

21. a > 0 일 때, 다음 계산에서 옳은 것을 모두 고르면? (정답 2개)

$$\boxed{1} \sqrt{64a^2} - \sqrt{a^2} = 7a$$

$$(-\sqrt{3a})^2 - (-\sqrt{7a})^2 = 10a$$

$$(-\sqrt{2a})^2 + (-\sqrt{a^2}) = a$$

②
$$\sqrt{(11a)^2} + \sqrt{(-11a)^2} = 11a + 11a = 22a$$

③ $-\sqrt{169a^2} - \sqrt{(-3a)^2} = -13a - 3a = -16a$

$$(-\sqrt{3a})^2 - (-\sqrt{7a})^2 = 3a - 7a = -4a$$

22. a > 0 일 때, 다음 계산에서 옳지 <u>않은</u> 것을 모두 골라라.

- ▶ 답:
- ▶ 답:
- ▶ 답:
- ▷ 정답: Э
- ▷ 정답: □
- ▷ 정답 : □

해설

$$\bigcirc -\sqrt{(-4a)^2} \times \frac{\sqrt{25a^2}}{a^2} = -4a \times \frac{5a}{a^2} = -20$$

23. x < 0 일 때, $\sqrt{(-3x)^2} - \sqrt{(5x)^2} - \sqrt{(9x^2)}$ 을 간단히 하면?

①
$$-5x$$
 ② x ③ $5x$ ④ $11x$ ⑤ $13x$

$$x < 0$$
 일 때, $-3x > 0$, $5x < 0$, $3x < 0$ 이므로 $\sqrt{(-3x)^2} - \sqrt{(5x)^2} - \sqrt{(9x^2)}$
= $-3x - (-5x) - (-3x)$

= -3x + 5x + 3x = 5x

24. 0 < a < 1 일 때, $\sqrt{(a-1)^2} - \sqrt{(1-a)^2}$ 를 간단히 하라.

해설
$$0 < a < 1$$
 일 때, $0 < 1 - a < 1$ 이므로 다음이 성립한다.
$$\sqrt{(a-1)^2} - \sqrt{(1-a)^2} = -(a-1) - (1-a)$$

= -a + 1 - 1 + a = 0

25. 두 실수 a,b 에 대하여 a > 0, b < 0 일 때, $\sqrt{a^2 - |b|} + \sqrt{(a-b)^2}$ 을 간단히 하면?

① 0 ②
$$2a$$
 ③ $2b$ ④ $a-b$ ⑤ $2a-2b$

$$a > 0$$
 이므로 $\sqrt{a^2} = a$
 $a > 0$, $b < 0$ 이므로 $\sqrt{(a-b)^2} = a - b$
 \therefore (준식) $= a + b + a - b = 2a$

26. x 의 값이 x > 0 일 때, $\sqrt{(x+1)^2} + \sqrt{(x+4)^2}$ 을 간단히 하면?

① 3 ②
$$2x + 5$$
 ③ $x + 5$ ④ $2x$

$$x > 0$$
 이므로
 $\sqrt{(x+1)^2} + \sqrt{(x+4)^2} = (x+1) + (x+4)$
 $= 2x + 5$

27. 다음 설명 중 옳은 것을 모두 고르면?(단, a > 0)

- ① 모든 수의 제곱근은 항상 2 개이다.
- ② a^2 의 제곱근은 a 이다.
- ③ \sqrt{a} 는 제곱근 a 와 같다.
 - ④ $\sqrt{a^2}$ 의 제곱근은 \sqrt{a} 이다.
- ⑤ 모든 자연수의 제곱근은 항상 2 개이다.

- ① 0 의 제곱근은 한 개이고 음수의 제곱근은 없다.
- ② a^2 의 제곱근은 $\pm a$
- ④ $\sqrt{a^2}$ 의 제곱근은 $\pm \sqrt{a}$

28. 반지름의 길이의 비가 1:3 인 두 원이 있다. 이 두 원의 넓이의 합이 $40\pi\mathrm{cm}^2$ 일 때, 작은 원의 반지름의 길이는 몇 cm 인가?

작은 원의 반지름을
$$r$$
라고 하면, 큰 원의 반지름은 $3r$ 이다. (두 원의 넓이의 합)= $\pi r^2 + \pi (3r)^2 = 10\pi r^2 = 40\pi \,\mathrm{cm}^2$ $r^2 = 4$ $\therefore r = 2 \,\mathrm{cm} \;(\because r > 0)$

29. 다음 보기의 수를 각각 제곱근으로 나타낼 때, 근호를 사용하지 않아도 되는 것을 모두 고르면?

(5) (L), (2), (H)

4 (7), (2), (3)

30. $a\sqrt{(-a)^2}$ 의 양의 제곱근을 m, $-\sqrt{0.0144}$ 를 n이라고 할 때, $m \times 100n$ 의 값은? (단, a > 0)

$$1 - 12a$$

② 12a

(5) $-120a^2$

 $312a^2$

$$a\sqrt{(-a)^2}=a imes\sqrt{a^2}=a imes a=a^2$$
 이므로, $a\sqrt{(-a)^2}$ 의 양의

제곱근은
$$a$$
이다. $m = a$

$$-\sqrt{0.0144} = -\sqrt{(0.12)^2} = -0.12 = n$$

$$m \times 100n = a \times 100 \times (-0.12) = -12a$$

31. 다음 식을 간단히 하여라.

$$-\sqrt{\left(\frac{1}{2}\right)^2} - \sqrt{\left(-\frac{1}{4}\right)^2} \times \sqrt{0.4^2} - \sqrt{(-1.2)^2}$$

답:

$$-\sqrt{\left(\frac{1}{2}\right)^2} - \sqrt{\left(-\frac{1}{4}\right)^2} \times \sqrt{0.4^2} - \sqrt{(-1.2)^2}$$

$$= -\frac{1}{2} - \frac{1}{4} \times 0.4 - 1.2$$

$$= -0.5 - 0.1 - 1.2 = -1.8$$

32. 두 실수
$$a, b$$
 에 대하여 $a-b<0, ab<0$ 일 때, $\sqrt{a^2}+\sqrt{b^2}-\sqrt{(-a)^2}+\sqrt{(-b)^2}$ 을 간단히 한 것은?

① 0 ②
$$2a$$
 ③ $a-b$ ④ $2b$ ⑤ $a+b$

해설
$$ab < 0 \text{ 이면 } a \text{ 와 } b \text{ 의 부호가 다르다.}$$

$$a - b < 0 \text{ 이면 } a < b \text{ 이므로 } a < 0, b > 0 \text{ 이다.}$$

$$a < 0 \text{ 이므로 } \sqrt{a^2} = -a, b > 0 \text{ 이므로 } \sqrt{b^2} = b$$

$$a < 0 \text{ 이므로 } \sqrt{(-a)^2} = \sqrt{a^2} = -a$$

$$b > 0 \text{ 이므로 } \sqrt{(-b)^2} = \sqrt{b^2} = b$$
따라서
$$\sqrt{a^2} + \sqrt{b^2} - \sqrt{(-a)^2} + \sqrt{(-b)^2}$$

$$= -a + b - (-a) + b$$

$$= 2b$$

33. -2 < x < 3 일 때, $\sqrt{(x+2)^2} - \sqrt{(x-3)^2} + 2|3-x|$ 를 간단히 하여라.

$$-2 < x < 3$$
 일 때,
 $\sqrt{(x+2)^2} - \sqrt{(x-3)^2} + 2|3-x|$
 $= x + 2 + x - 3 + 6 - 2x = 5$