
- 수열 $\{a_n\}$ 의 첫째항부터 제 n 항까지의 합 S_n 이 $S_n = n^2 + 2n$ 일 때, a_{10} 의 값을 구하여라.
 - ▶ 답: ____

 $(-2) \cdot 3^{n-1}$ $(5) 2 \cdot (-3)^{n-1}$ 3. $8^{\frac{4}{3}} \times 4^{\frac{2}{3}} \div 2^{\frac{1}{3}}$ 의 값을 2^{x} 라고 할 때, x의 값을 구하면?

3 6

(4) 7

② 5

- **4.** 다음에서 $p \vdash q$ 이기 위한 필요충분조건인 것은? (단, a,b,c는 실수) ① p:a=1,b=1, q:a+b=2 , ab=1
 - ② p:a,b 는 짝수, q:a+b 는 짝수

⑤ p: ab > 0, q: |a+b| = |a| + |b|

- ③ p: a = b, q: ac = bc
- ⊕ p.u -

두 조건 $a \le x \le 5$, $b \le x \le 3$ 이 각각 조건 $0 \le x \le 4$ 이기 위한 필요조건과 충분조건일 때, a의 최댓값과 b의 최솟값의 합은?

 $\bigcirc 1 - 2 \qquad \bigcirc 2 - 1 \qquad \bigcirc 3 \bigcirc 0 \qquad \bigcirc 4 \bigcirc 1 \qquad \bigcirc 5 \bigcirc 2$

- 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합 S_n 이 $S_n = -n^2 + 2n$ 일 때. $a_{11} + a_{12} + a_{13} + \cdots + a_{20}$ 을 구하여라.
 - > 답:

첫째항부터 제5항까지의 합이 30. 첫째항부터 제10항까지의 합이 90 인 등비수열의 첫째항부터 제15항까지의 합은? (1) 210 \bigcirc 250

 $\bigcirc 10^{200} + 1$

 $3 10^{100} + 1$

9. $\sum_{k=1}^{10} (a_k+1)^2 = 60$, $\sum_{k=1}^{10} (a_k-1)^2 = 20$ 일 때, $\sum_{k=1}^{10} a_k$ 의 값은?

③ 30

(2) 20

10. 수열
$$1 \cdot 1$$
, $2 \cdot 3$, $3 \cdot 5$, $4 \cdot 7$, \cdots 에서 첫째항부터 제 n 항까지의 합은? ① $\frac{1}{6}n(n+1)(n+2)$ ② $\frac{1}{6}n(n+1)(2n-2)$

11. 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합 S_n 이 $S_n = n^2 + 2n$ 일 때, $\sum_{k=1}^{5} ka_k$ 의 값은?

③ 145

(4) 160

12. 수열
$$\{a_n\}$$
에서 $a_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}(n=1,\ 2,\ 3,\cdots)$ 일 때, $30a_{30}-(a_1+a_2+a_3+\cdots+a_{29})$ 의 값을 구하여라.

$$a_1 + a_2 + \dots + a_n = n^2 a$$

13. $a_1 = 110$ 인 수열 $\{a_n\}$ 은 다음을 만족한다.

$$a_1 + a_2 + \dots + a_n = n^2 a_n (n = 1, 2, 3, \dots)$$

*a*₁₀ 의 값을 구하여라.

14. 세 자연수 a, b, c의 최대공약수가 3이고. 등식 $2^a \cdot 5^b = 400^c$ 을 만족할 때, a+b+c의 값을 구하여라. > 답:

15.
$$10^a = 2$$
, $10^b = 3$ 일 때, $\log_{15} 10$ 을 a , b 로 나타내면?

 $\begin{array}{ccc}
 & & & & & & \\
\hline
 & & & & & \\
\end{array}$ $\begin{array}{cccc}
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\end{array}$

$$\begin{array}{c}
2 & \overline{a-b+1} \\
\hline
5 & \underline{1}
\end{array}$$

 $\overline{a+b-1}$

16. $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ 을 이용하여 $\log_{10} 1.08$ 의 값을 계산하면?

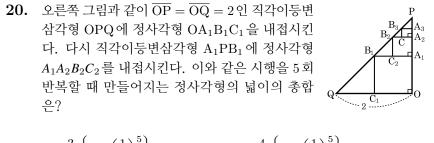
① 0.0327 ② 0.0329 ③ 0.0331

 $\bigcirc 0.0335$

(4) 0.0333

17. 다음 상용로그표를 이용하여 log ³√0.138</sub>의 소수 부분을 구하여라.

수	0	1	2	3	4	5	6	7	8	9
1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106
1.3	.1139	.1173	.1206	.1239	.1271	.1303	.1335	.1367	.1399	.1430
1.4	.1461	.1492	.1523	.1553	.1584	.1614	.1644	.1673	.1703	.1732

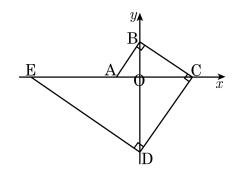


18. 각 항이 모두 양수로 이루어진 등비수열 $\{a_n\}$ 에 대하여 수열 $\{\log a_n\}$ 은 어떤 수옄인가? ① 공차가 a 인 등차수열 ② 공차가 $\log r$ 인 등차수열

③ 공차가 $\log a$ 인 등차수열 ④ 공차가 r인 등비수열

⑤ 공차가 $\log r$ 인 등비수열

19. 이차방정식 $x^2 - 2x + k = 0(k$ 는 실수)이 허근을 가질 때, f(k) = $k+1+\frac{1}{k-1}$ 의 최솟값은?


①
$$\frac{3}{4} \left\{ 1 - \left(\frac{1}{2}\right)^5 \right\}$$
 ② $\frac{4}{3} \left\{ 1 - \left(\frac{1}{4}\right)^5 \right\}$ ③ $\left\{ 1 + \left(\frac{1}{4}\right)^5 \right\}$ ④ $\frac{4}{3}$

21. $4^x = 3 + 2\sqrt{2}$ 일 때, $16^x + 16^{-x}$ 의 값을 구하여라.

> 답:

22. a, b, p, q가 1이 아닌 양수일 때, $\log_a p + \log_b q = 2$, $\log_p a + \log_a b = -1$ 이 성립한다. $(\log_a p)^2 + (\log_b q)^2$ 의 값은?

23. 그림과 같이 좌표축 위의 다섯 개의 점 A, B, C, D, E에 대하여 AB⊥BC, BC⊥CD, CD⊥DE가 성립한다. 세 선분 AO, OC, EA의 길이가 순서대로 등차수열을 이룰 때, 직선 AB의 기울기는? (단, O는 원점이고 OA < OB이다.)

(1) $\sqrt{2}$ (2) $\sqrt{3}$ (3) 2 (4) $\sqrt{5}$ (5) $\sqrt{6}$

24. 수열 $\{a_n\}$ 이 다음 조건을 만족할 때, $\sum_{k=1}^{40} a_k$ 의 값은?

25. 다음은 도형의 차워에 대한 석명이다

선분을 2등분하면 2개의 선분으로 나누어지고 3등분하면 3 개로 나누어진다. 이것을 각각 $2 = 2^1$, $3 = 3^1$ 로 나타낼 수 있으므로 선분의 차원은 1차원이다. 정사각형의 각 변을 2 등분하면 정사각형 4개로 나누어지고 3등분하면 9개로 나누 어진다. 이것을 각각 $4 = 2^2$, $9 = 3^2$ 로 나타낼 수 있으므로 정사각형의 차원은 2차원이다. 정육면체의 각 변을 2등분하면 정육면체 8개로 나누어지고 3등부하면 27개로 나누어진다 이것을 각각 $8 = 2^3$, $27 = 3^3$ 로 나타낼 수 있으므로 정육면 체의 차원은 3차원이다. 일반적으로 어떤 도형을 x등분하여 같은 모양 v개로 나눠질 때, $v = x^a$ 의 관계가 성립하면 a = 1도형의 차원이라고 한다. 오른쪽 그림은 [도형1]을 이용하여 같은 모양으로

이루어진 [도형2]를 만든 것이다. 이때, [도형1]의 차원을 구하면?

 $(1) \log 2$

 $\log 3$

[도형1]

 $\log 2$

 $\log 2$ $\log 3$